Лекция: гистология сердечно-сосудистой системы. Лекции по гистологии (сердечно-сосудистая система) Типы капилляров

    капилляры с непрерывным эндотелиальным слоем - соматического типа, локализуются в мозгу, мышцах, коже;

    фенестрированные капилляры – висцерального типа, с источениями цитоплазмы эндотелия - (капилляры клубочков почки, ворсинки кишечника);

    капилляры со щелевидными отверстиями в эндотелии и базальной мембране – капилляры синусоидного типа (в селезёнке, печени и др. органах).

Артериоло-венулярные анастомозы (ABA). Эта часть микроциркуляторного русла обеспечивает прямой переход артериальной крови в ве­ны, минуя капилляры. ABA локализуются почти во всех органах.

Различают две группы анастомозов:

    истинные ABA (шунты), по которым сбрасывается чистая артериальная кровь. Они в свою очередь по строению подразделяются на две группы:

    простые ABA - имеют границу перехода артериолы в венулу, которая соответствует участку, где заканчивается средняя оболочка артериолы. Регуляция кровотока осуществляется гладкими мышеч­ными клетками средней оболочки самой артериолы без специальных сократительных аппаратов;

    ABA, имеющие специальные сократительные уст­ройства в виде валиков или подушек в подэпителиальном слое, образованные продольно располо­женными гладкими мышечными клетками. Сокращения мышечных подушек, которые выступают в просвет анастомоза, приводит к прекращению кровотока.

К этой же подгруппе относятся ABA эпителиоидного типа (простые и сложные).

В простых ABA эпителиального типа мышечные клетки постепенно к венозному концу заменяют­ся на короткие овальные светлые клетки (Е-клетки), похожие на эпителиальные. В сложных и клубочковых, приносящая артериола разделяется на две-четыре веточки, которые переходят в ве­нозный сегмент.

    атипичные ABA (полушунты) это соединения артериол и венул; через короткий сосуд капиллярного типа. Поэто­му кровь, сбрасываемая в венозное русло, явля­ется не полностью артериальной.

Соединение артериальной и венозной систем, минуя капилляры, имеет большое значение для регуляции кровяного давления, кровоснабжения органов, артериализации венозной крови, мобилизации депонированной крови, регуляции тока тканевой жидкости в венозное русло.

Венулы . Различают три разновидности венул:

    посткапиллярные,

    собирательные,

Мышечные.

Посткапиллярные венулы по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов, чем в капиллярах.

В собирательных венулах появляются отдельные гладкие мышечные клетки и более четки выражена наружная оболочка.

Мышечные венулы имеют один-два слоя гладких миоцитов в средней оболочке и сравнительно хорошо развитую наружную оболочку.

Венозный отдел МЦР вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гемолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.

Вены (venae) обеспечивают возвращение крови к сердцу, де­понирование крови. Общий план строения вен такой же, как и артерий, но имеет свои особенности:

    стенка вены тоньше, чем у соответствующей артерии;

    в венах преобладают коллагеновые волокна, а эластические волокна развиты слабо;

    отсутствует наружная эластическая мембрана, внутренняя эластическая мембрана развита слабо;

    просвет вены на препарате имеет часто неправильную форму, тогда как у артерий он круглый;

    относительно наибольшую толщину в венах имеет наружная оболочка, а в артериях - средняя оболочка;

    наличие клапанов в некоторых венах.

Вены классифицируются в зависимости от развития мышечных эле­ментов в её стенке:

Вены безмышечного типа Вены мышечного типа

Вены со слабым развитием мышечных элементов

Вены с сильным развитием мышечных элементов

Вены безмышечного типа. К венам этого типа относят безмышечные вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, селезенки, костей и плаценты. Стенка сосудов изнутри выстлана эндоте­лием на базальной мембране. Средняя оболочка отсутствует. Наружная оболочка представлена тонким слоем рыхлой волокнистой соединительной тканью, срастающейся с окружающими тканями, в результате чего эти вены не спадаются и отток крови по ним совершается легко.

Вены со слабым развитием мышечных элементов . Особенность строения их стенки зависит от гемодинамических условий. Кровь в них движется под действием си­лы земного притяжения. Эти вены имеют плохо выраженный подэндотелиальный слой, в средней оболочке содержится мало гладких мышечных клеток. В наружной оболочке вен встречаются единичные мышечные клетки. К этой группе вен относятся: вены верхней части туловища, шеи, ли­ца, верхняя полая вена.

Вены со средним развитием мышечных элементов. Примером является плечевая вена. Особенности строения: внутренняя оболочка формирует клапанный аппарат, а также имеет в своем составе отдельные продольно направленные миоциты, внутренняя эластическая мембрана не выражена, средняя оболочка тонкая, в ней циркулярно расположены гладкие мышечные клетки, наружная эластическая мембрана отсутствует, поэтому прослойки соединительной ткани средней оболочки переходят непосредственно в рыхлую волокнистую соединительную ткань наружной оболочки.

Вены с сильным развитием мышечных элементов . Для этих вен характерно сильное разви­тие мышечных клеток во всех трёх оболочках. Во внутренней и наружной оболочках гладкие миоциты располагаются продольно, а в сред­ней - циркулярной. Характерной особенностью этих вен является нали­чие клапанов. К этим венам относятся: вены нижней половины туловища и ног.

Клапаны - это карманоподобные складки внутренней оболочки, открытые в сторону сердца. Они препятствуют обратному току крови. Основу клапана составляет волокнистая соединительная ткань. При этом на стороне, обращенной к просвету сосуда, под эндотелием залегают преимущественно эластические волокна, а на противоположной стороне – много коллагеновых волокон. В основании створки клапана может находиться небольшое количество гладких миоцитов.

Нижняя полая вена по строению резко отличается от впадающих в нее вен. Внутренняя и средняя оболочки развиты слабо. Наружная оболочка имеет большое количество продольно расположенных пучков гладких мышечных клеток и по своей толщине в 6-7 раз превышает внутреннюю и среднюю оболочки, вместе взятые. В нижней полой вене отсутствуют клапаны, их функцию выполняют, образующиеся поперечные складки наружной оболочки, препятствующие обратному току крови.

По калибру вены подразделяют на крупные, средние и малые.

Лимфатические сосуды.

Лимфатическая система проводит лимфу от тканей в венозное русло. В функциональном отношении лимфатические сосуды тесно связны с кровеносными сосудами, особенно в области расположения сосудов микроциркуляторного русла. Именно здесь происходит образование тканевой жидкости и проникновение ее в лимфатическое русло.

Классификация . Среди лимфатических сосудов различают:

    лимфатические капилляры,

    интралимфатические сосуды,

    экстралимфатические сосуды,

    грудной проток,

    правый лимфатический проток.

Лимфатические капилляры представляют собой слепо начинающиеся уплощенные канальцы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ. Стенка их образована только эндотелием. Базальной мембраны и перицитов нет. Эндотелий связан с окружающей соединительной тканью пучками якорных, или стропных, филаментов, препятствующих спадению капилляров. Между эндотелиоцитами имеются щели. Диаметр лимфатических капилляров может изменяться от степени наполнения их лимфой. Лимфатические капилляры выполняют дренажную функцию, участвуя в процессах всасывания фильтрата плазмы крови из соединительной ткани.

Лимфатические сосуды. В структуре стенки лимфатических сосудов много общего с венами, что объясняется сходными условиями лимфо- и гемодинамики (низкое давление, малая скорость протекания, направление оттока от тканей к сердцу). Различают сосуды мышечного и безмышечного типа. Средние и крупные лимфатические сосуды имеют в составе стенки три хорошо развитые оболочки (внутреннюю, среднюю и наружную). Внутренняя оболочка лимфатических сосудов образует многочисленные складки – клапаны . Расширенные участки сосудов между соседними клапанами называются лимфангионами. Средняя оболочка более выражена в сосудах нижних конечностей. По ходу лимфатических сосудов расположены лимфатические узлы. Особенностью строения стенки крупных лимфатических сосудов (грудного протока и правого лимфатического протока) является хорошо развитая наружная оболочка, которая в 3-4 раза толще внутренней и средней вместе взятых. В наружной оболочке проходят продольные пучки гладкомышечных клеток. По ходу грудного протока имеется до 9 полулунных клапанов.

Сердце (соr) – центральный орган крово- и лимфообращения. Благодаря способности к сокращениям, сердце приводит в движение кровь.

Стенка сердца образована тремя оболочками:

    эндокардом, (внутренняя);

    миокардам, (средняя);

    эпикардом, (наружная).

Эндокард состоит из четырёх слоев:

    эндотелий на базальной мембране;

    подэндотелиальный слой – рыхлая соединительная ткань, богатая малодифференцированными клетками;

    мышечно-эластический слой - образован гладкими миоцитами и эластическими волокнами;

    наружный соединительно-тканный слой состоит из рыхлой волокнистой соединитель­ной ткани, содержащей эластические, коллагеновые и ретикулярные волокна.

Клапаны .

Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. Она представляют собой покрытые эндотелием тонкие фиброзные пластинки из плотной волокнистой соединительной ткани с небольшим количеством клеток. Клетки, покрывающие клапан, частично покрывают друг друга в виде черепицы или образуют пальцевидные вдавления цитоплазмы одной клетки в другую. Кровеносных сосудов стенки клапанов не имеют. Строение предсердных и желудочковых частей створок клапанов неодинаково. Предсердная сторона имеет гладкую поверхность, здесь в подэндотелиальном слое располагаются густое сплетение эластических волокон и пучки гладких мышечных клеток. Количество мышечных пучков заметно увеличивается в основании клапана. Желудочковая сторона обладает неровной поверхностью. Она снабжена выростами, от которых начинаются сухожильные нити. В этой области под эндотелием располагается лишь небольшое количество эластических волокон.

Миокард состоит из сердечной мышечной ткани и просло­ек рыхлой волокнистой соединительной ткани с сосудами и нервами. Различают типичные сократительные мышечные клетки – кардиомиоциты и атипичные - проводящие сердечные миоциты, входящие в состав так называемой проводящей системы сердца. Сократительные миоциты – клетки прямоугольной формы с центрально расположенным ядром. В цитоплазме миофибриллы располагаются продольно. В образовании Т-трубочек участвует базальная мембрана. Поперечно-полосатая сердечная мышечная ткань, описана в разделе «Мышечная ткань».

Проводящая система сердца объединяет мышечные клетки, формирующие и проводящие импульсы к сократительным кардиомиоцитам. В ее состав входят: синусо-предсердный узел, предсердно-желудочковый узел, предсердно-желудочковый пучок Гисса. Различают три типа проводящих мышечных клеток:

1. Первый тип – водители ритма или пейсмекерные клетки, способные к самопроизвольному сокращению. Отличаются небольшими размерами, многоугольной формой, небольшое количество, неупорядочно расположенных миофибрилл. Т-системы отсутствуют.

2. Переходные – тонкие, вытянутые клетки, миофибриллы более развиты, ориентированны параллельно, но не всегда.

3. Клетки пучка Гисса – крупные, отсутствуют Т-системы, миофибриллы тонкие, расположены без определенного порядка по периферии клетки, ядра локализуются эксцентрично.

Эпикард и перикард . Наружная оболочка сердца или эпикард является висцеральным листком перикарда. Эпикард состо­ит из тонкой пластинки соединительной ткани, которая покрыта мезотелием.

Между эпикардом и перикардом имеется щелевидное пространство, содержащее небольшое количество жидкости, выполняющие роль смазки. В перикарде соединительная основа развита сильнее, чем в эпикарде.

Значение сердечно-сосудистой системы (ССС) в жизнедеятельности организма, а следовательно и знания всех аспектов этой области для практической медицины, настолько велико, что в изучение этой системы обособились как две самостоятельные направления кардиология и ангиология. Сердце и сосуды относятся к системам, которые функционируют не периодически, а постоянно, поэтому чаще чем другие системы подвержены патологическим процессам. В настоящее время заболевания ССС, наряду с онкологическими заболеваниями, занимает ведущее место по смертности.

Сердечно-сосудистая система обеспечивает движение крови по организму, регулирует поступление питательных веществ и кислорода в ткани и удаление продуктов обмена, депонирование крови.

Классификация :

I. Центральный орган - сердце.

II. Периферический отдел:

А. Кровеносные сосуды:

1. Артериальное звено:

а) артерии эластического типа;

б) артерии мышечного типа;

в) артерии смешанного типа.

2.Микроциркуляторное русло:

а) артериолы;

б) гемокапилляры;

в) венулы;

г) артериоло-венулярные анастомозы

3. Венозное звено:

а) вены мышечного типа (со слабым, средним, сильным развитием мышечных

элементов;

б) вены безмышечного типа.

Б. Лимфатические сосуды:

1. Лимфатические капилляры.

2. Интраорганные лимфатические сосуды.

3. Экстраорганные лимфатические сосуды.

В эмбриональном периоде первые кровеносные сосуды закладываются на 2-ой неделе в стенке желточного мешка из мезенхимы (см. этап мегалобластического кроветворения по теме «Кроветворение») - появляются кровяные островки, периферические клетки островка уплощаются и дифференцируются в эндотелиальную выстилку, а из окружающей мезенхимы образуются соединительнотканные и гладкомышечные элементы стенки сосудов. Вскоре из мезенхимы образуются кровеносные сосуды и в теле зародыша, которые соединяются с сосудами желточного мешка.

Артериальное звено - представлено сосудами, по которым кровь доставляется от сердца к органам. Термин «артерия» переводится как «воздухсодержащие», так как при вскрытии исследователи эти сосуды чаще находили пустыми (не содержащие кровь) и думали что по ним распространяется по организму жизненная «пневма» или воздух.. Артерии эластического, мышечного и смешанного типа имеют общий принцип строения: в стенке выделяют 3 оболочки - внутреннюю, среднюю и наружную адвентициальную.

Внутренняя оболочка состоит из слоев:

2. Подэндотелиальный слой - рылая волокнистая сдт с большим содержанием малодифференцированных клеток.

3. Внутренняя эластическая мембрана - сплетение эластических волокон.

Средняя оболочка содержит гладкомышечные клетки, фибробласты, эластические и коллагеновые волокна. На границе средней и наружной адвентициальной оболочки имеется наружная эластическая мембрана - сплетение эластических волокон.

Наружная адвентициальная оболочка артерий гистологически представлена

рыхлой волокнистой сдт с сосудами сосудов и нервами сосудов.

Особенности в строении разновидностей артерий обусловлены различиями в гемадинамических условиях их функционирования. Различия в строении преимущественно касаются средней оболочки (различного соотношения составных элементов оболочки):

1. Артерии эластического типа - к ним относятся дуга аорты, легочной ствол, грудная и брюшная аорта. Кровь в эти сосуды поступает толчками под большим давлением и продвигается на большой скорости; отмечается большой перепад давления при переходе систола - диастола. Главное отличие от артерий других типов - в строении средний оболочки: в средней оболочке из вышеперечисленных компонентов (миоциты, фибробласты, коллагеновые и эластические волокна) преобладают эластические волокна. Эластические волокна располагаются не только в виде отдельных волокон и сплетений, а образуют эластические окончатые мембраны (у взрослых число эластических мембран достигает до 50-70 словев). Благодаря повышенной эластичности стенка этих артерий не только выдерживает большое давление, но и сглаживает большие перепады (скачки) давления при переходах систола - диастола.

2. Артерии мышечного типа - к ним относятся все артерии среднего и мелкого калибра. Особенностью гемодинамических условий в этих сосудах является падение давления и снижение скорости кровотока. Артерии мышечного типа отличаются от артерий другого типа преобладанием в средней оболочке миоцитов над другими структурными компонентами; четко выражены внутренняя и наружная эластическая мембрана. Миоциты по отношению к просвету сосуда ориентированы спирально и встречаются даже в составе наружной оболочки этих артерий. Благодаря мощному мышечному компоненту средний оболочки эти артерии контролируют интенсивность кровотока отдельных органов, поддерживают падающее давление и дальше проталкивают кровь, поэтому артерии мышечного типа еще называют «периферическим сердцем».

3. Артерии смешанного типа - к ним относятся крупные артерии отходящие от аорты (сонная и подключичная артерия). По строению и функциям занимают промежуточное положение. Главная особенность в строении: в средней оболочке миоциты и эластические волокна представлены приблизительно одинаково (1: 1), имеется небольшое количество коллагеновых волокон и фибробластов.

Микроциркуляторное русло - звено расположенное между артериальным и венозным звеном; обеспечивает регуляцию кровенаполнения органа, обмен веществ между кровью и тканями, депонирование крови в органах.

Состав:

1. Артериолы (включая прекапиллярные).

2. Гемокапилляры.

3. Венулы (включая посткапиллярные).

4. Артериоло-венулярные анастомозы.

Артериолы - сосуды, соединяющие артерии с гемокапиллярами. Сохраняют принцип строения артерий: имеют 3 оболочки, но оболочки выражены слабо - подэндотелиальный слой внутренней оболочки очень тонкий; средняя оболочка представлена одним слоем миоцитов, а ближе к капиллярам - одиночными миоцитами. По мере увеличения диаметра в средней оболочке количество миоцитов увеличивается, образуется вначале один, затем два и более слоев миоцитов. Благодаря наличию в стенке миоцитов (в прекапиллярных артериолах в виде сфинктера) артериолы регулируют кровенаполнение гемокапилляров, тем самым - интенсивность обмена между кровью и тканями органа.

Гемокапилляры . Стенка гемокапилляров имеют наименьшую толщину и состоит из 3-х компонентов - эндотелиоциты, базальная мембрана, перициты в толще базальной мембраны. Мышечных элементов в составе стенки капилляров не имеется, однако диаметр внутреннего просвета может несколько изменяться в результате изменения давления крови, способности ядер перицитов и эндотелиоцитов к набуханию и сжатию. Различают следующие типы капилляров:

1. Гемокапилляры I типа (соматического типа) - капилляры с непрерывным эндотелием и непрерывной базальной мембраной, диаметр 4-7 мкм. Имеются в скелетной мускулатуре, в коже и слизистых оболочках..

2. Гемокапилляры II типа (фенестрированного или висцерального типа) - базальная мембрана сплошная, в эндотелие имеются фенестры - истонченные участки в цитоплазме эндотелиоцитов. Диаметр 8-12 мкм. Имеются в капиллярных клубочках почки, в кишечнике, в эндокринных железах.

3. Гемокапилляры III типа (синусоидного типа) - базальная мембрана не сплошная, местами отсутствует, а между эндотелиоцитами остаются щели; диаметр 20-30 и более мкм, не постоянный на протяжении - имеются расширенные и суженные участки. Кровоток в этих капиллярах замедлен. Имеются в печени, органах кроветворения, эндокринных железах.

Вокруг гемокапилляров раполагается тонкая прослойка рыхлой волокнистой сдт с большим содержанием малодифференицрованных клеток, от состояния которой зависит интенсивность обмена между кровью и рабочими тканями органа. Барьер между кровью в гемокапиллярах и окружающей рабочей тканью органа называется гистогематическим барьером, который состоит из эндотелиоцитов и базальной мембраны.

Капилляры могут менять строение, перестроиться в сосуды другого типа и калибра; от имеющихся гемокапилляров могут формироваться новые ответвления.

Прекапилляры отличаются от гемокапилляров тем, что в стенке кроме эндотелиоцитов, базальной мембраны, перицитов имеются единичные или группы миоцитов.

Венулы начинаются с посткапиллярных венул, которые отличаются от капилляров большим содержанием в стенке перицитов и наличием клапаноподобных складок из эндотелиоцитов. По мере увеличения диаметра венул в стенке увеличивается содержание миоцитов - вначале одиночные клетки, затем группы и наконец сплошные слои.

Артериоло-венулярные анастомозы (АВА) - это шунты (или соустья) между артериолами и венулами, т.е. осуществляют прямую связь и участвуют в регуляции регионального периферического кровотока. Их особенно много в коже и в почках. АВА - короткие сосуды, имеют также 3 оболочки; имеются миоциты, особенно много в средней оболочке, выполняющие роль сфинктера.

ВЕНЫ. Особенностью гемодинамических условий в венах является низкое давление (15-20 мм.рт.ст.) и низкая скорость течения крови, что обуславливает меньшее содержание в этих сосудах эластических волокон. В венах имеются клапаны - дупликатура внутренней оболочки. Количество мышечных элементов в стенке этих сосудов зависит от того, движется ли кровь под действием силы тяжести или против нее.

Вены безмышечного типа имеются в твердой мозговой оболочке, костях, сетчатке глаза, плаценте, в красном костном мозге. Стенка вен безмышечного типа снутри выстлана эндотелиоцитами на базальной мембране, далее следует прослойка волокнистой сдт; гладкомышечных клеток нет.

Вены мышечного типа со слабо выраженными мышечными элементами находятся в верхней половине туловища - в системе верхней полой вены. Эти вены обычно в спавшемся состоянии. В средней оболочке имеют небольшое количество миоцитов.

Вены с сильно развитыми мышечными элементами составляют систему вен нижней половины туловища. Особенностью этих вен является хорошо выраженные клапаны и наличие миоцитов во всех трех оболочках - в наружной и внутренней оболочке в продольном, в средней - циркулярном направлении.

ЛИМФАТИЧЕСКИЕ СОСУДЫ начинаются с лимфатических капилляров (ЛК). ЛК в отличие от гемокапилляров начинаются слепо и имеют больший диаметр. Внутренняя поверхность выстлана эндотелием, базальная мембрана отсутствует. Под эндотелием располагается рыхлая волокнистая сдт с большим содержанием ретикулярных волокон. Диаметр ЛК непостоянен - имеются сужения и расширения. Лимфатические капилляры сливаясь образуют внутриорганные лимфатические сосуды - по строению близки к венам, т.к. находятся в одинаковых гемодинамических условиях. Имеют 3 оболочки, внутренняя оболочка образует клапаны; в отличие от вен под эндотелием базальная мембрана отсутствует. Диаметр на протяжении не постоянен - имеются расширения на уровне клапанов.

Экстраорганные лимфатические сосуды также по строению схожи с венами, но базальная мемрана эндотелия плохо выражена, местами отсутствует. В стенке этих сосудов четко выделяется внутренняя эластическая мембрана. Средняя оболочка особого развития получает в нижних конечностях.

СЕРДЦЕ. Сердце закладывается в начале 3-й неделе эмбрионального развития в виде парного зачатка в шейной области из мезенхимы под висцеральным листком спланхнотомов. Из мезенхимы образуются парные тяжи, которые вскоре превращаются в трубочки, из которых в конечном счете образуется внутренняя оболочка сердца - эндокард. Участки висцерального листка спланхнотомов, огибащие эти трубочки называются миоэпикардиальными пластинками, дифференцирующиеся впоследствии в миокард и эпикард. По мере развития зародыша с появлением туловищной складки плоский зародыш сворачивается в трубку - тело, при этом 2 закладки сердца оказываются в полости грудной клетки, сближаются и наконец сливаются в одну трубку. Далее эта трубка-сердце начинает быстро расти в длину и не помещаясь в грудной клетке образует несколько изгибов. Соседние петли изгибающейся трубки срастаются и из простой трубки формируется 4-х камерное сердце.

СЕРДЦЕ - центральный орган ССС, имеет 3 оболочки: внутренняя - эндокард, средняя (мышечная) - миокард, наружная (серозная) - эпикард.

Эндокард состоит из 5 слоев:

1. Эндотелий на базальной мембране.

2. Подэндотелиальный слой из рыхлой волокнистой сдт с большим количеством малодифференцированных клеток.

3. Мышечно-эластический слой (миоциты эластические волокна).

4. Эластически-мышечный слой (миоцитыэластические волокна).

5. Наружный сдт-й слой (рыхлая волокнистая сдт).

В целом строение эндокарда напоминает строение стенки кровеносного сосуда.

Мышечная оболочка (миокард) состоит из кардиомиоцитов 3-х типов: сократительные, проводящие и секреторные (особенности строения и функций см. в теме «Мышечные ткани»).

Эндокард является типичной серозной оболочкой и состоит из слоев:

1. Мезотелий на базальной мембране.

2. Поверхностный коллагеновый слой.

3. Слой эластических волокон.

4. Глубокий коллагеновый слой.

5. Глубокий коллагеново-эластический слой (50 % всей толщины эпикарда).

Под мезотелием во всех слоях между волокнами имеются фибробласты.

Регенерация ССС . Сосуды, эндокард и эпикард регенерируют хорошо. Репаративная регенерация сердца - плохая, дефект замещается сдт рубцом; физиологическая регенерация - хорошо выражена, за счет внутриклеточной регенерации (обновление изношенных органоидов).

Возрастные изменения ССС . В сосудах в пожилом и старческом возрасте наблюдается утолщение внутренней оболочки, возможны отложения холестерина и солей кальция (атеросклеротические бляшки). В средней оболочке сосудов уменьшается содержание миоцитов и эластических волокон, увеличивается количество коллагеновых волокон и кислых мукополисахаридов.

В миокарде сердца после 30 лет увеличивается доля сдт-ой стромы, появляются жировые клетки; нарушается равновесие в вегетативной иннервации: начинается преобладание холинэргической иннервации над адренэргической.

Инструкции по изучению микропрепаратов

А. Сосуды МЦР. Артериолы, капилляры, венулы.

Окраска – гематоксилин-эозин.

Для того чтобы определить взаимосвязь между звеньями микроциркуляторного русла, нужно окрасить и рассмотреть тотальный, пленочный препарат, где сосуды видим не на срезе, а в целом. Выбираем на препарате участок с мелкими сосудами, чтобы была видна их связь с капиллярами.

Артериолы как первое звено микроциркуляторного русла распознаем по характерному размещению гладких миоцитов. Сквозь стенку артериолы просвечивают светлые удлиненные овальные ядра эндотелиоцитов. Их длинная ось совпадает с ходом артериолы.

Венулы имеют более тонкую стенку, более темные ядра эндотелиоцитов и в просвете несколько рядов эритроцитов красного цвета.

Капилляры – тонкие сосуды, имеют наименьший диаметр и самую тонкую стенку, в состав которой входит один слой эндотелиоцитов. Эритроциты располагаются в просвете капилляра в один ряд. Можно также разглядеть места отхождения капилляров от артериол и места впадения капилляров в венулы. Между сосудами содержится рыхлая волокнистая соединительная ткань типичного строения.

1. На электронограмме капилляра четко определяются фенестры в эндотелии и поры в базальной мембране. Назовите тип капилляра.

A. Синусоидный.

B. Соматический.

C. Висцеральный.

D. Атипичный.

E. Шунтовой.

2. И.М. Сеченов назвал артериолы "кранами" сердечно-сосудистой системы. Какие структурные элементы обеспечивают эту функцию артериол?

A. Циркулярные миоциты.

B. Продольные миоциты.

C. Эластические волокна.

D. Продольные мышечные волокна.

E. Циркулярные мышечные волокна.

3. На электронной микрофотографии капилляра с широким просветом четко определяются фенестры в эндотелии и поры в базальной мембране. Определите тип капилляра.

A. Синусоидный.

B. Соматический.

C. Атипичный.

D. Шунтовой.

E. Висцеральный.

4. Наличие какого типа капилляров характерно для микроциркуляторного русла кроветворных органов человека?

A. Перфорированных.

B. Фенестрированных.

C. Соматических.

D. Синусоидных.

5. В гистологическом препарате обнаруживаются сосуды, которые начинаются слепо, имеют вид уплощённых эндотелиальных трубок, не содержат базальную мембрану и перициты, эндотелий этих сосудов фиксирован тропными филантами к коллагеновым волокнам соединительной ткани. Какие это сосуды?

A. Лимфокапилляры.

B. Гемокапилляры.

C. Артериолы.

D. Венулы.

E. Артериоло-венулярные анастомозы.

6. Для капилляра характерно наличие фенестрированного эпителия и пористой базальной мембраны. Тип этого капилляра:

A. Синусоидный.

B. Соматический.

C. Висцеральный.

D. Лакунарный.

E. Лимфатический.

7. Назовите сосуд микроциркуляторного русла, в котором во внутренней оболочке подэндотелиальный слой слабо выражен, внутренняя эластическая мембрана очень тонкая. Средняя оболочка образована 1-2 слоями спирально направленных гладких миоцитов.

A. Артериола.

B. Венула.

C. Капилляр соматического типа.

D. Капилляр фенестрированного типа.

E. Капилляр синусоидного типа.

8. В каких сосудах наблюдается наибольшая общая поверхность, которая создает оптимальные условия для двустороннего обмена веществ между тканями и кровью?

A. Капиллярах.

B. Артериях.

D. Артериолах.

E. Венулах.

9. На электронной микрофотографии капилляра с широким просветом четко определяются фенестры в эндотелии и поры в базальной мембране. Определите тип капилляра.

A. Синусоидний.

B. Соматический.

C. Атипичный.

D. Шунтовой.

E. Висцеральный.

Дополнение P

(обязательное)

Гистофункциональные особенности сосудов МЦР

в вопросах и ответах

1. Какие функциональные звенья МЦР выделяют?

А. Звено, в котором происходит регуляция притока крови к органам. Оно представлено артериолами, метартериолами, прекапиллярами. Все названные сосуды содержат сфинктеры, главными компонентами которых являются циркулярно расположенные ГМК.

Б. Другим звеном являются сосуды, которые отвечают за обмен веществ и газов в тканях. Такими сосудами являются капилляры. Третьим звеном являются сосуды, которые обеспечивают дренажно-депонирующую функцию МЦР. К ним относятся венулы.

2. Какие особенности строения артериол?

Каждая оболочка состоит из одного слоя клеток. Миоциты в средней оболочке образуют наклонную спираль, расположены под углом больше 45 градусов. Между миоцитами и эндотелием образуются миоэндотелиальные контакты. Артериолы не имеют эластической мембраны.

3. Какие гистофункциональные особенности прекапилляров?

Миоциты вдоль прекапилляра находятся на значительном расстоянии. Вместах отхождения прекапилляров от артериол и местах ветвления прекапилляров на капилляры находятся сфинктеры, в которых ГМК располагаются циркулярно. Сфинктеры обеспечивают селективное распределение крови между обменными звеньями МЦР. Следует заметить также, что просвет открытых прекапилляров меньше, чем капилляров, что можно сравнить с эффектом бутылочного горла.

4. Какие гистофункциональные особенности артериоло-венулярных анастомозов? (дополнение 7 черт. 3)

Различают две группы анастомозов:

1) истинные (шунты);

2) атипичные (полушунты).

По истинным шунтам течет артериальная кровь. По строению истинные шунты бывают:

1) простые, где нет дополнительных сократительных аппаратов, то есть регуляция кровотока осуществляется ГМК средней оболочки артериолы;

2) со специальными сократительными аппаратами в виде валиков или подушечек в подэндотелиальном слое, которые выступают в просвет сосуда.

По атипичным (полушунтам) течет смешанная кровь. По строению они являются соединением артериолы и венулы посредством короткого капилляра, диаметр которого до 30 мкм.

Артериоло-венулярные анастомозы принимают участие в регуляции кровенаполнения органов, местного и общего давления крови, в мобилизации депонируемой в венулах крови.

Значительная роль АВАв компенсаторных реакциях организма при нарушениях кровообращения и развитии патологических процессов.

5. Какие структурные основы гематотканевого взаимодействия?

Главный компонент гематотканевого взаимодействия эндотелий, который является избирательным барьером, а также приспособлен к обмену веществ. Кроме того, контроль трансцеллюлярного и интрацеллюлярного транспорта обеспечивается многомембранным принципом организации клеток и динамическими свойствами клеточных мембран.

Приложение 2. Таблица 1 Типы капилляров

Типы капилляров

Строение

Локализация

1. Соматический

d = 4,5 – 7 мкм

Эндотелий сплошной (обычный), базальная мембрана непрерывная

Мышцы, легкие, кожа, ЦНС, экзокринные железы, тимус.

2. Фенестрированный

(висцеральный)

d = 7 – 20 мкм

Фенестрованный эндотелий и сплошная базальная мембрана

Почечные клубочки, эндокринные органы, слизистая оболочка ЖКТ, сосудистое сплетение мозга

3. Синусоидный

d = 20 -40 мкм

Вэндотелии есть щели между клетками и базальная мембрана перфорированная

Печень, кроветворные органы и кора надпочечника

Приложение 3. Таблица 2 – Типы венул

Типы венул

Строение

Посткапиллярные

d =12 – 30 мкм.

Больше перицитов, чем в капиллярах.

Ворганах иммунной системы имеют высокий эндотелий

1. Возвращение клеток крови из тканей.

2. Дренажная.

3. Удаление ядов и метаболитов.

4. Депонирование крови.

5. Иммунологическая (рециркуляция лимфоцитов).

6. Участие в реализации нервных и эндокринных влияний на обмен и кровоток

Собирательные

d = 30 – 50 мкм.

Мышечные

d › 50 мкм, до 100 мкм.

Приложение 4

Рисунок 1 Типы капилляров (схема по Ю.И. Афанасьеву):

I–гемокапилляр с непрерывной эндотелиальной выстилкой и базальной мембраной; II–гемока-пилляр с фенестрированным эндотелием и непрерывной базальной мембраной; III–гемокапилляр со щелевидными отверстиями в эндотелии и прерывистой базальной мембраной; 1–эндотелиоцит; 2–базальная мембрана; 3–фенестры; 4–щели (поры); 5–перицит; 6–адвентициальная клетка; 7–контакт эндотелиоцита и перицита; 8–нервное окончание

Приложение 5

Передкапиллярные сфинктеры


Рисунок 2 Компоненты МЦР (по В.Zweifach):

схема сосудов разного типа, которые образуют терминальное сосудистое русло и регулируют микроциркуляцию в нем.

Приложение 6

Рисунок 3 Артериоло-венулярные анастомозы (ABA) (схема по Ю.И.Афанасьеву):

I–ABA без специального запирающего устройства: I–артериола; 2–венула; 3–ана-стомоз; 4–гладкие миоциты анастомоза; II–ABA со специальным запирающим устройством: А–анастомоз типа запирающей артерии; Б–простой анастомоз эпителиоидного типа; В–сложный анастомоз эпителиоидного типа (клубочковый): Г–эндотелий; 2–продольно размещенные пучки гладких миоцитов; 3–внутренняя эластическая мембрана; 4–артериола; 5–венула; 6–анастомоз; 7–эпителиальные клетки анастомоза; 8–капилля-ры в соединительнотканной оболочке; III–атипичный анастомоз: 1–артериола; 2–ко-роткий гемокапилляр; 3–венула

Приложение 8

Рисунок 4

Приложение 9

Рисунок 5

Модуль 3. Специальная гистология.

"Специальная гистология сенсорных и регуляторных систем"

Тема занятия

"Сердце"

Актуальность темы . Детальное изучение морфофункциональных особенностей сердца в норме предопределяет возможности профилактики, ранней диагностики структурно-функциональных нарушений сердца. Знание гистологических особенностей сердечной мышцы помогает понять и объяснить патогенез сердечных заболеваний.

Общая цель занятия. Уметь:

1. Диагностировать на микропрепаратах структурные элементы сердечной мышцы.

Конкретные цели. Знать:

1. Особенности структурно-функциональной организации сердца.

2. Морфофункциональную организацию проводящей системы сердца.

3. Микроскопическое, ультрамикроскопическое строение и гистофизиологию сердечной мышцы.

4. Ход процессов эмбрионального развития, возрастные изменения и регенерацию сердца.

Исходный уровень знаний-умений. Знать:

1. Макроскопическое строение сердца, его оболочки, клапаны.

2. Морфофункциональную организацию сердечной мышцы (кафедра анатомии человека).

После усвоения необходимых базовых знаний переходите к изучению материала, который можете найти в следующих источниках информации.

А. Основная литература

1. Гистология /под ред. Ю.И.Афанасьева, Н.А.Юриной. – Москва: Медицина, 2002. – С. 410–424.

2. Гистология /под ред. В.Г.Елисеева, Ю.И.Афанасьева, Н.А.Юриной – Москва: Медицина, 1983. – С. 336–345.

3. Атлас по гистологии и эмбриологии /под ред. И.В.Алмазова, Л.С.Сутулова. – М.: Медицина, 1978.

4. Гістологія, цитологія та ембріологія (атлас для самостійної роботи студентів) /за ред. Ю.Б.Чайковського, Л.М.Сокуренко – Луцьк, 2006.

5. Методические разработки к практическим занятиям: в 2-х частях. – Черновцы, 1985.

Б. Дополнительная литература

1. Гистология (введение в патологию) /под ред. Э.Г.Улумбекова, проф. Ю.А.Челышева. – М., 1997. – С. 504–515.

2. Гистология, цитология и эмбриология (атлас) /под ред. О.В.Волковой, Ю.К.Елецкого – Москва: Медицина, 1996. – С. 170–176.

3. Частная гистология человека /под ред. В.Л.Быкова. – СОТИС: Санкт-Петербург, 1997. – С. 16–19.

В. Лекции по данной теме.

Теоретические вопросы

1. Источники развития сердца.

2. Общая характеристика строения стенки сердца.

3. Микро-и субмикроскопическое строение эндокарда и клапанов сердца.

4. Миокард, микро-и ультраструктуры типичных кардиомиоцитов. Ведущая система сердца.

5. Морфофункциональная характеристика атипичных миоцитов.

6. Строение эпикарда.

7. Иннервация, кровоснабжение и возрастные изменения сердца.

8. Современные представления о регенерации и трансплантации сердца.

Краткие методические указания к работе

на практическом занятии

В начале занятия будет проверено выполнение домашних заданий. Затем самостоятельно Вы должны изучить такой микропрепарат, как стенка сердца быка. Эту работу выполняете согласно алгоритму изучения микропрепаратов. Во время самостоятельной работы Вы можете консультироваться по поводу тех или иных вопросов по микропрепаратам с преподавателем.

Технологическая карта занятия

Продолжительность

Средства обучения

Оборудование

Место проведения

Проверка и коррекция исходного уровня знаний и домашних заданий

Таблицы, рисунки-схемы

Компьютеры

Компью-терный класс, учебная комната

Самостоятельная работа по изучению микропрепаратов, электронограмм

Инструкции по изучению микро-препаратов таблиц, микрофото-граммы, электроно-граммы

Микроскопы, микропрепа-раты, альбомы для зарисовок микропрепа-ратов

Учебная комната

Анализ итогов самостоятельной работы

Микрофото-грамы, электроно-граммы, набор тестов

Компьютеры

Компью-терный класс

Подведение итогов занятия

Учебная комната

Для закрепления материала выполните задания:

К структурам, обозначенным цифрами, подберите соответствующие им по морфологии и функции описания. Назовите клетку и обозначенные структуры:

а) эти структуры расположены вдоль мышечного волокна и имеют анизотропные и изотропные полосы (или диски Аи И);

б) мембранные органеллы общего назначения, которые образуют и накапливают энергию в виде АТФ;

в) система компонентов разной формы, которая обеспечивает транспорт ионов кальция;

г) система узких канальцев, которая разветвляется в мышечном волокне и обеспечивает передачу нервного импульса;

д) мембранные органеллы общего назначения, обеспечивающие клеточное пищеварение;

е) темные полоски, идущие поперек волокна, содержат три типа межклеточных контактов: ж) десмосомный; з) нексус; и) адгезивный.

Вопросы к тестовому контролю

1. Какая главная функция сердца?

2. Когда происходит закладка сердца?

3. Какой источник развития эндокарда?

4. Какой источник развития миокарда?

5. Какой источник развития эпикарда?

6. Когда начинается формирование проводящей системы сердца?

7. Как называется внутренняя оболочка сердца?

8. Какой из перечисленных слоев не входит в состав эндокарда?

9. Вкаком слое эндокарда есть сосуды?

10. За счет чего осуществляется питание эндокарда?

11. Каких клеток много в подэндотелиальном слое эндокарда?

12. Какая ткань составляет основу строения клапанов сердца?

13. Чем покрыты клапаны сердца?

14. Из чего состоит миокард?

15. Сердечная мышца состоит из…

16. Миокард по строению относится к…

17. Чем образованы мышечные волокна миокарда?

18. Что не характерно для кардиомиоцитов?

19. Что характерно для сердечной мышцы?

20. Какая оболочка сердца состоит из кардиомиоцитов?

21. Какой источник развития кардиомиоцитов?

22. На какие виды подразделяются кардиомиоциты?

23. Что не характерно для строения кардиомиоцитов?

24. Чем отличаются Т-трубочки сердечной мышцы от Т-трубочек скелетных мышц?

25. Почему в сократительных кардиомиоцитах отсутствует типичная картина триад?

26. Какую функцию выполняют Т-трубочки сердечной мышцы?

27. Что не характерно для предсердных кардиомиоцитов?

28. Где синтезируется натрийуретический фактор?

29. Какое значение предсердного натрийуретического фактора?

30. Какое значение вставочных дисков?

31. Какие межклеточные соединения находятся в участках вставочных дисков?

32. Какую функцию выполняют десмосомные контакты?

33. Какую функцию выполняют щелевые контакты?

34. Какие клетки образуют второй тип миоцитов миокарда?

35. Что не входит в состав проводящей системы сердца?

36. Какие клетки не входят в состав проводящих сердечных миоцитов?

37. Какую функцию выполняют пейсмекерные клетки?

38. Где расположены пейсмекерные клетки?

39.Что не характерно для строения пейсмекерных клеток?

40. Какую функцию выполняют переходные клетки?

41. Какую функцию выполняют волокна Пуркинье?

42. Что не характерно для строения переходных клеток проводящей системы сердца?

43. Что не характерно для строения волокон Пуркинье?

44. Какое строение эпикарда?

45. Чем покрыт эпикард?

46. Какой слой отсутствует в эпикарде?

47. Как происходит регенерация сердечной мышцы в детском возрасте?

48. Как происходит регенерация сердечной мышцы у взрослых людей?

49. Из какой ткани состоит перикард?

50. Эпикард–это…

Инструкция по изучению микропрепаратов

А. Стенка сердца быка

Окраска – гематоксилин-эозином.

При малом увеличении необходимо сориентироваться в оболочках сердца. Эндокард выделяется в виде розовой полоски, покрытой эндотелием с большими фиолетовыми ядрами. Под ним находится подэндотелиальный слой–рыхлая соединительная ткань, глубже–мышечно-эластический и наружный соединительнотканный слои.

Основную массу сердца составляет миокард. В миокарде наблюдаем полоски кардиомиоцитов, ядра в которых расположены по центру. Между полосками (цепочками) кардиомиоцитов различают анастомозы. Внутри полосок (это функциональные мышечные "волокна") кардиомиоциты соединены с помощью вставочных дисков. Кардиомиоциты имеют поперечную исчерченность, обусловленную наличием изотропных (светлых) и анизотропных (темных) дисков в составе самих миофибрилл. Между цепочками кардиомиоцитов наблюдаются светлые промежутки, заполненные рыхлой волокнистой соединительной тканью.

Непосредственно под эндокардом размещаются скопления проводящих (атипичных) кардиомиоцитов. На поперечном сечении они имеют вид крупных оксифильных клеток. В их саркоплазме меньше миофибрилл, чем в сократительных кардиомиоцитах.

Задачи к лицензионному экзамену "Крок-1"

1. На микропрепарате–стенка сердца. В одной из оболочек находятся сократительные и секреторные миоциты, эндомизий с кровеносными сосудами. Какой оболочке сердца соответствуют данные структуры?

А. Миокарду предсердий.

В. Перикарду.

С. Адвентициальной оболочке.

D. Эндокарду желудочков.

2. В лаборатории перепутали маркировки гистологических препаратов миокарда и скелетных мышц. Какая структурная особенность позволила определить препарат миокарда?

А. Периферийное положение ядер.

В. Наличие вставочного диска.

С. Отсутствие миофибрилл.

D. Наличие поперечной исчерченности.

3. В результате инфаркта миокарда произошло повреждение участка сердечной мышцы, которое сопровождается массовой гибелью кардиомиоцитов. Какие клеточные элементы обеспечат замещение образовавшегося дефекта в структуре миокарда?

А. Фибробласты.

B. Кардиомиоциты.

С. Миосателлитоциты.

D. Эпителиоциты.

Е. Неисчерченные миоциты.

4. На гистологическом препарате "стенки сердца" основную часть миокарда образуют кардиомиоциты, которые с помощью вставочных дисков формируют мышечные волокна. Соединение какого типа обеспечивает электрическую связь соседних клеток?

А. Щелевой контакт (Нексус).

B. Десмосома.

С. Полудесмосома.

D. Плотный контакт.

Е. Простой контакт.

5. На гистологическом препарате представлен орган сердечно-сосудистой системы. Одна из его оболочек образована волокнами, которые анастомозируют между собой, состоят из клеток, и в месте контакта образуют вставочные диски. Оболочка какого органа представлена на препарате?

А. Сердца.

B. Артерии мышечного типа.

D. Вены мышечного типа.

Е. Артерии смешанного типа.

6. В стенке кровеносных сосудов и стенке сердца различают несколько оболочек. Какая из оболочек сердца по гистогенезу и тканевому составу подобна стенке сосудов?

А. Эндокард.

B. Миокард.

С. Перикард.

D. Эпикард.

Е Эпикард и миокард.

7. На гистологическом препарате "стенки сердца" под эндокардом можно видеть удлиненные клетки с ядром на периферии с небольшим количеством органелл и миофибрилл, которые расположены хаотично. Что это за клетки?

А. Исчерченные миоциты.

B. Сократительные кардиомиоциты.

С. Секреторные кардиомиоциты.

D. Гладкие миоциты.

Е. Проводящие кардиомиоциты.

8. В результате инфаркта миокарда наступила блокада сердца: предсердия и желудочки его сокращаются несинхронно. Повреждение каких структур является причиной этого явления?

А. Проводящих кардиомиоцитов пучка Гисса.

B. Пейсмекерных клеток синусно-предсердного узла.

С. Сократительных миоцитов желудочков.

D. Нервных волокон n.vagus.

Е. Симпатических нервных волокон.

9. У больного на эндокардит обнаружена патология клапанного аппарата внутренней оболочки сердца. Какие ткани образуют клапаны сердца?

А. Плотная соединительная ткань, эндотелий.

B. Рыхлая соединительная ткань, эндотелий.

С. Сердечная мышечная ткань, эндотелий.

D. Гиалиновая хрящевая ткань, эндотелий.

Е. Эластическая хрящевая ткань, эндотелий.

10. У больного на перикардит в перикардиальной полости накапливается серозная жидкость. С нарушением деятельности каких клеток перикарда связан этот процесс?

А. Клеток мезотелия.

B. Клеток эндотелия.

С. Гладких миоцитов.

D. Фибробластов.

Е. Макрофагов

Приложение V

(обязательное)

Проводящая система сердца. Systema conducens cardiacum

Всердце выделяют атипичную ("проводящую") мышечную систему. Микроанатомия проводящей системы сердца отражена на схеме 1. Эта система представлена: синусно-предсердным узлом (синоатриальным); предсердно-желудочковым узлом (AV); предсердно-желудочковым пучком Гисса.

Различают три типа мышечных клеток, которые в разных соотношениях находятся в разных отделах этой системы.

Синусно-предсердный узел размещен почти в стенке верхней полой вены в области венозного синуса, в этом узле происходит формирование импульса, который определяет автоматизм сердца, его центральную часть занимают клетки первого типа–водители ритма, или пейсмекерные клетки (Р-клетки). Эти клетки отличаются от типичных кардиомиоцитов небольшими размерами, многоугольной формой, небольшим количеством миофибрилл, саркоплазматическая сеть развита слабо, Т-система отсутствует, много пиноцитозных пузырьков и кавеол. Их цитоплазма имеет способность к спонтанной ритмической поляризации и деполяризации. Предсердно-желудочковый узел составляют преимущественно переходные клетки (клетки второго типа).

Они выполняют функцию проведения возбуждения и его преобразования (торможение ритма) от Р-клеток к клеткам пучка и сократительным, но при патологии синусно-предсердного узла его функция переходит к атриовентрикулярному. Поперечный их срез меньше, чем поперечный срез типичных кардиомиоцитов. Миофибриллы более развиты, ориентированы параллельно друг другу, но не всегда. Отдельные клетки могут содержать Т-трубочки. Переходные клетки контактируют между собой как с помощью простых контактов, так и вставочных дисков.

Предсердно-желудочковый пучок Гисса состоит из ствола, правой и левой ножек (волокна Пуркинье), левая ножка распадается на переднюю и заднюю ветви. Пучок Гисса и волокна Пуркинье представлены клетками третьего типа, которые передают возбуждение от переходных клеток к сократительным кардиомиоцитам желудочков. По строению клетки пучка отличаются большими размерами в диаметре, почти полным отсутствием Т-систем, миофибриллы тонкие, которые беспорядочно размещаются главным образом по периферии клетки. Ядра расположены эксцентрично.

Клетки Пуркинье–крупнейшие не только в ведущей системе, но и во всем миокарде. Вних много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.

Учебное издание

Васько Людмила Витальевна, Киптенко Людмила Ивановна,

Будко Анна Юрьевна, Жукова Светлана Вячеславовна

Специальная гистология сенсорных и

регуляторных систем

В двух частях

Ответственный за выпуск Васько Л.В.

Редактор Т.Г.Чернышова

Компьютерная верстка А.А. Качановой

Подписано к печати 7.07.2010.

Формат 60x84/16. Усл. печ. л. . Уч. - изд. л. . Тираж экз.

Зам. № . Себестоимость издания

Издатель и изготовитель Сумский государственный университет

ул. Римского-Корсакова, 2, г. Сумы, 40007.

Свидетельство субъекта издательского дела ДК 3062 от 17.12.2007.

Др.), а также регуляторных веществ - кейлонов, ...

  • Гистология конспект лекций часть i общая гистология лекция 1 введение общая гистология общая гистология - введение понятие ткани классификация

    Конспект

    Общая гистология . Лекция 1. Введение. Общая гистология . Общая гистология ... перигеммальные). 1. Вкусовые сенсорные эпителиоциты - вытянутые... систему сосудов. Это достигается мощным развитием специальной ... др.), а также регуляторных веществ - кейлонов, ...

  • » мне неизвестен вероятно как тесты по гистология

    Тесты

    ... «Заголовок 4». При вёрстке «ГИСТОЛОГИЯ -2» стили«Заголовок 3» и «Заголовок 4» ... Большинство медицинских специальностей изучает закономерности жизнедеятельности... тела, – влияние регуляторных систем организма, – вовлечение... поражения сенсорной сферы. ...

  • Антациды и адсорбенты Противоязвенные средства Средства влияющие на вегетативную нервную систему Адренергические средства H2-антигистаминные средства Ингибиторы протонного насоса

    Методичка

    Получает с помощью сенсорных систем (анализаторов). Дать... белковых компонентов. Гистология лекция ТЕМА: ... ретикулумом с помощью специального механизма - кальциевого... и текущим функциональным состоянием регуляторных систем . Этим объясняется исключительная...

  • Развитие сосудов.

    Первые сосуды появляются на второй – третьей недели эмбриогенеза в желточном мешке и хорионе. ИЗ мезенхимы образуется скопление – кровяные островки. Центральные клетки островков округляются и превращаются в стволовые клетки крови. Периферические клетки островка дифференцируются в эндотелии сосуда. Сосуды в теле зародыша закладываются чуть позже, в этих сосудах стволовые клетки крови не дифференцируются. Первичные сосуды похожи на капилляры, их дальнейшая дифференцировка определяется гемодинамическими факторами – это давление и скорость кровотока. Первоначально в сосудах закладывается очень много значительная часть, которая редуцируется.

    Строение сосудов.

    В стенке всех сосудов можно выделить 3 оболочки:

    1. внутреннюю

    2. среднюю

    3. наружную

    Артерии

    В зависимости от соотношения мышечных эластических компонентов различают артерии типа:

    Эластического

    Крупные магистральные сосуды – аорты. Давление – 120-130 мм/рт/ст, скорость кровотока – 0,5 1,3 м/сек. Функция – транспортная.

    Внутренняя оболочка:

    А) эндотелий

    уплощенные клетки полигональной формы

    Б) подэндотелиальный слой (субэндотелиальный)

    Представлен рыхлой соединительной тканью, содержит клетки звездчатой формы, которые выполняют комбиальные функции.

    Средняя оболочка:

    Представлен окончатыми эластическими мембранами. Между ними небольшое количество мышечных клеток.

    Наружная оболочка:

    Представлена рыхлой соединительной тканью, содержит сосуды и нервные стволики.

    Мышечного

    Артерии мелкого и среднего колибра.

    Внутренняя оболочка:

    А) эндотелий

    Б) подэндотелиальный слой

    В) внутренняя эластическая мембрана

    Средняя оболочка:

    Преобладают гладкомышечные клетки, расположенные по пологой спирали. Между средней и наружной оболочкой – наружная эластическая мембрана.

    Наружная оболочка:

    Представлена рыхлой соединительной ткани

    Смешанного

    Артериолы

    Сходны с артериями. Функция – регуляция кровотока. Сеченов назвал эти сосуды – краны сосудистой системы.

    Средняя оболочка представлена 1-2 слоями гладкомышечных клеток.

    Капилляры

    Классификация:

    В зависимости от диаметра:

      узкие 4,5-7 мкм - мышцы, нервы, скелетно-мышечная ткань

      средние 8-11 мкм – кожа, слизистые

      синусоидные до 20-30 мкм – эндокринные железы, почки

      лакуны до 100 мкм – встречается в пещеристых телах

    В зависимости от строения:

      Соматический – сплошной эндотелий и непрерывная базальная мембрана – мышцы, легкие, ЦНС

    Строение капилляра:

    3 слоя, которые являются аналогами 3-х оболочек:

    А) эндотелий

    Б) перициты, заключенные в базальную мембрану

    В) адвентициальные клетки

    2. финистрированный – имеют истончение или окошки в эндотелии – эндокринные органы, почки, кишечник.

    3. перфорированные – имеются сквозные отверстия в эндотелии и в базальной мембране – кроветворные органы.

    Венулы

      посткапиллярные венулы

    сходны с капиллярами, но имеют больше перицитов

      собирательные венулы

      мышечные венулы

    Вены

    Классификация:

    ● волокнистого (безмышечного) типа

    Находятся в селезенке, плаценте, печени, костях, мозговой оболочке. В этих венах подэндотелиальный слой переходит в окружающую соединительную ткань

    ● мышечного типа

    Выделяют три подтипа:

    ● В зависимости от мышечного компонента

    А) вены со слабым развитием мышечных элементов, располагаются выше уровня сердца, кровь течет пассивно вследствие своей тяжести.

    Б) вены со средним развитием мышечных элементов – плечевая вена

    В) вены с сильным развитием мышечных элементов, крупные вены, лежащие ниже уровня сердца.

    Мышечные элементы встречаются во всех трех оболочках

    Строение

    Внутренняя оболочка:

      Эндотелий

      Подэндотелиальный слой – продольно-направленные пучки мышечных клеток. За внутренней оболочки формируется клапан.

    Средняя оболочка:

    Циркулярно расположенные пучки мышечных клеток.

    Наружная оболочка:

    Рыхлая соединительная ткань, и продольно расположенные мышечные клетки.

    СЕРДЦЕ

    РАЗВИТИЕ

    Сердце закладывается в конце 3-ей неделе эмбриогенеза. Под висцеральным листком спланхнотома, образуется скопление мезенхимных клеток, которые превращаются в удлиненные трубочки. Эти мезенхимные скопления вдаются в циломическую полость, прогибая висцеральные листки спланхнотома. И участки – миоэпикардиальные пластинки. В дальнейшем из мезенхимы образуются эндокард, миоэпикардиальные пластинки, миокард и эпикард. Клапаны развиваются как дубликатура эндокарда.

    Микроциркуляторное русло включает в себя следующие компоненты:

      артериолы;

      прекапилляры;

      капилляры;

      посткапилляры;

    • артериоло-венулярные анастомозы.

    Функции микроциркуляторного русла состоят в следующем:

      трофическая и дыхательная функции, так как обменная поверхность капилляров и венул составляет 1000 м 2 , или 1,5 м 2 на 100 г ткани;

      депонирующая функция, так как в сосудах микроциркуляторного русла в состоянии покоя депонируется значительная часть крови, которая во время физической работы включается в кровоток;

      дренажная функция, так как микроциркуляторное русло собирает кровь из приносящих артерий и распределяет ее по органу;

      регуляция кровотока в органе, эту функцию выполняют артериолы благодаря наличию в них сфинктеров;

      транспортная функция, то есть транспорт крови.

    В микроциркуляторном русле различают три звена:

      артериальное (артериолы прекапилляры);

      капиллярное;

      венозное (посткапилляры, собирательные и мышечные венулы).

    Артериолы имеют диаметр 50-100 мкм. В их строении сохраняются три оболочки, но они выражены слабее, чем в артериях. В области отхождения от артериолы капилляра находится гладкомышечный сфинктер, который регулирует кровоток. Этот участок называется прекапилляром.

    Капилляры — это самые мелкие сосуды, они различаются по размерам на:

      узкий тип 4-7 мкм;

      обычный или соматический тип 7-11 мкм;

      синусоидный тип 20-30 мкм;

      лакунарный тип 50-70 мкм.

    В их строении прослеживается слоистый принцип. Внутренний слой образован эндотелием. Эндотелиальный слой капилляра — аналог внутренней оболочки. Он лежит на базальной мембране, которая вначале расщепляется на два листка, а затем соединяется. В результате образуется полость, в которой лежат клетки перициты. На этих клетках на этих клетках заканчиваются вегетативные нервные окончания, под регулирующим действием которых клетки могут накапливать воду, увеличиваться в размере и закрывать просвет капилляра. При удалении из клеток воды они уменьшаются в размерах, и просвет капилляров открывается. Функции перицитов:

      изменение просвета капилляров;

      источник гладкомышечных клеток;

      контроль пролиферации эндотелиальных клеток при регенерации капилляра;

      синтез компонентов базальной мембраны;

      фагоцитарная функция.

    Базальная мембрана с перицитами — аналог средней оболочки. Снаружи от нее находится тонкий слой основного вещества с адвентициальными клетками, играющими роль камбия для рыхлой волокнистой неоформленной соединительной ткани.

    Для капилляров характерна органная специфичность, в связи с чем выделяют три типа капилляров:

      капилляры соматического типа или непрерывные, они находятся в коже, мышцах, головном мозге, спинном мозге. Для них характерен непрерывный эндотелий и непрерывная базальная мембрана;

      капилляры фенестрированного или висцерального типа (локализация — внутренние органы и эндокринные железы). Для них характерно наличие в эндотелии сужений — фенестр и непрерывной базальной мембраны;

      капилляры прерывистого или синусоидного типа (красный костный мозг, селезенка, печень). В эндотелии этих капилляров имеются истинные отверстия, есть они и в базальной мембране, которая может вообще отсутствовать. Иногда к капиллярам относят лакуны — крупные сосуды со строением стенки как в капилляре (пещеристые тела полового члена).

    Венулы делятся на:

      посткапиллярные;

      собирательные;

      мышечные.

    Посткапиллярные венулы образуются в результате слияния нескольких капилляров, имеют такое же строение, как и капилляр, но больший диаметр (12-30 мкм) и большое количество перицитов. В собирательных венулах (диаметр 30-50 мкм), которые образуются при слиянии нескольких посткапиллярных венул, уже имеются две выраженные оболочки: внутренняя (эндотелиальный и подэндотелиальный слои) и наружная — рыхлая волокнистая неоформленная соединительная ткань. Гладкие миоциты появляются только в крупных венулах, достигающих диаметра 50 мкм. Эти венулы называются мышечными и имеют диаметр до 100 мкм. Гладкие миоциты в них, однако, не имеют строгой ориентации и формируют один слой.

    Артериоло-венулярные анастомозы или шунты — это вид сосудов микроциркуляторного русла, по которым кровь из артериол попадает в венулы, минуя капилляры. Это необходимо, например, в коже для терморегуляции. Все артериоло-венулярные анастомозы делятся на два типа:

      истинные — простые и сложные;

      атипичные анастомозы или полушунты.

    В простых анастомозах отсутствуют сократительные элементы, и кровоток в них регулируется за счет сфинктера, расположенного в артериолах в месте отхождения анастомоза. В сложных анастомозах в стенке есть элементы, регулирующие их просвет и интенсивность кровотока через анастомоз. Сложные анастомозы делятся на анастомозы гломусного типа и анастомозы типа замыкающих артерий. В анастомозах типа замыкающих артерий во внутренней оболочке имеются скопления расположенных продольно гладких миоцитов. Их сокращение приводит к выпячиванию стенки в виде подушки в просвет анастомоза и закрытию его. В анастомозах типа гломуса (клубочек) в стенке есть скопление эпителиоидных Е-клеток (имеют вид эпителия), способных насасывать воду, увеличиваться в размерах и закрывать просвет анастомоза. При отдаче воды клетки уменьшаются в размерах, и просвет открывается.

    В полушунтах в стенке отсутствуют сократительные элементы, ширина их просвета не регулируется. В них может забрасываться венозная кровь из венул, поэтому в полушунтах, в отличии от шунтов, течет смешанная кровь. Анастомозы выполняют функцию перераспределения крови, регуляции артериального давления.