Молекулярная физика. Кипение жидкости

Кипение - процесс изменения агрегатного состояния вещества. Когда мы говорим о воде, то имеем в виду изменение жидкого состояния в парообразное. Важно отметить, что кипение - это не испарение, которое может протекать даже при комнатной температуре. Также не стоит путать с кипячением, что является процессом нагревания воды до определенной температуры. Теперь, когда мы разобрались с понятиями, можно определить, при какой температуре кипит вода.

Процесс

Сам процесс преобразования агрегатного состояния из жидкого в газообразное является сложным. И хотя люди этого не видят, существует 4 стадии:

  1. На первой стадии на дне нагреваемой емкости образуются небольшие пузырьки. Также их можно заметить по бокам или на поверхности воды. Они образуются из-за расширения воздушных пузырьков, которые всегда есть в трещинах емкости, где нагревается вода.
  2. На второй стадии объем пузырьков увеличивается. Все они начинают рваться к поверхности, так как внутри них находится насыщенный пар, который легче воды. При повышении температуры нагрева давление пузырьков возрастает, и они выталкиваются на поверхность благодаря известной силе Архимеда. При этом можно слышать характерный звук кипения, который образуется из-за постоянного расширения и уменьшения в размере пузырьков.
  3. На третьей стадии на поверхности можно видеть большое количество пузырьков. Это вначале создает помутнение воды. Данный процесс в народе называют "кипением белым ключом", и длится он короткий промежуток времени.
  4. На четвертой стадии вода интенсивно бурлит, на поверхности возникают большие лопающиеся пузыри, возможно появление брызг. Чаще всего брызги означают, что жидкость нагрелась до максимальной температуры. Из воды начнет исходить пар.

Известно, что вода кипит при температуре 100 градусов, которая возможна лишь на четвертой стадии.

Температура пара

Пар представляет собой одно из состояний воды. Когда он поступает в воздух, то, как и другие газы, оказывает на него определенное давление. При парообразовании температура пара и воды остаются постоянными до тех пор, пока вся жидкость не изменит свое агрегатное состояние. Это явление можно объяснить тем, что при кипении вся энергия расходуется на преобразование воды в пар.

В самом начале закипания образуется влажный насыщенный пар, который после испарения всей жидкости становится сухим. Если его температура начинает превышать температуру воды, то такой пар является перегретым, и по своим характеристикам он будет ближе к газу.

Кипение соленой воды

Достаточно интересно знать, при какой температура кипит вода с повышенным содержанием соли. Известно, что она должна быть выше из-за содержания в составе ионов Na+ и Cl-, которые между молекулами воды занимают область. Этим химический состав воды с солью отличается от обычной пресной жидкости.

Дело в том, что в соленой воде имеет место реакция гидратации - процесс присоединения молекул воды к ионам соли. Связь между молекулами пресной воды слабее тех, которые образуются при гидратации, поэтому закипание жидкости с растворенной солью будет происходить дольше. По мере роста температуры молекулы в воде с содержанием соли двигаются быстрее, но их становится меньше, из-за чего столкновения между ними осуществляются реже. В результате пара образуется меньше, и его давление из-за этого ниже, чем напор пара пресной воды. Следовательно, для полноценного парообразования потребуется больше энергии (температуры). В среднем для закипания одного литра воды с содержанием 60 граммов соли необходимо поднять градус кипения воды на 10% (то есть на 10 С).

Зависимости кипения от давления

Известно, что в горах вне зависимости от химического состава воды температура кипения будет ниже. Это происходит из-за того, что атмосферное давление на высоте ниже. Нормальным принято считать давление со значением 101.325 кПа. При нем температура закипания воды составляет 100 градусов по Цельсию. Но если подняться на гору, где давление составляет в среднем 40 кПа, то там вода закипит при 75.88 С. Но это не значит, что для приготовления еды в горах придется потратить почти вдвое меньше времени. Для термической обработки продуктов нужна определенная температура.

Считается, что на высоте 500 метров над уровнем моря вода будет закипать при 98.3 С, а на высоте 3000 метров температура закипания составит 90 С.

Отметим, что данный закон действует и в обратном направлении. Если поместить жидкость в замкнутую колбу, через которую не может проходить пар, то с ростом температуры и образованием пара давление в этой колбе будет расти, и закипание при повышенном давлении произойдет при более высокой температуре. Например, при давлении 490.3 кПа температура кипения воды составит 151 С.

Кипение дистиллированной воды

Дистиллированной называется очищенная вода без содержания каких-либо примесей. Ее часто применяют в медицинских или технических целях. С учетом того, что в такой воде нет никаких примесей, ее не используют для приготовления пищи. Интересно заметить, что закипает дистиллированная вода быстрее обычной пресной, однако температура кипения остается такой же - 100 градусов. Впрочем, разница по времени закипания будет минимальной - всего доли секунды.

В чайнике

Часто люди интересуются, при какой температуре кипит вода в чайнике, так как именно этими приборами они пользуются для кипячения жидкости. С учетом того, что атмосферное давление в квартире равно стандартному, а используемая вода не содержит солей и других примесей, которых там не должно быть, то и температура закипания также будет стандартной - 100 градусов. Но если вода будет содержать соль, то температура закипания, как мы уже знаем, будет выше.

Заключение

Теперь вы знаете, при какой температуре кипит вода, и как атмосферное давление и состав жидкости влияют на данный процесс. В этом нет ничего сложного, и подобную информацию дети получают еще в школе. Главное - запомнить, что со снижением давления понижается и температура кипения жидкости, а с его ростом увеличивается и она.

В интернете можно найти множество разных таблиц, где указывается зависимость температуры кипения жидкости от атмосферного давления. Они доступны всем и активно используются школьниками, студентами и даже преподавателями в институтах.

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре .

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным .

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром .

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​\((\rho) \) ​ называют массу водяного пара, содержащегося в 1 м 3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10 -3 кг/м 3 , то это означает, что в 1 м 3 содержится 9,41·10 -3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью .

Относительной влажностью воздуха ​\((\varphi) \) ​ называют величину, равную отношению плотности водяного пара ​\((\rho) \) ​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​\((\rho_0) \) ​ при этой температуре:

\[ \varphi=\frac{\rho}{\rho_0}100\% \]

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10 -3 кг/м 3 . Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром .

Психрометр состоит из двух термометров, один из которых сухой, а другой - влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали - разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​\(\varphi \) ​ = 59%.

4. Второй процесс парообразования - кипение . Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением . Температуру, при которой жидкость кипит, называют температурой кипения .

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования .

Удельной теплотой парообразования ​\((L) \) ​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования - ​\([L] \) ​ = Дж/кг.

Чтобы рассчитать количество теплоты ​\(Q \) ​, которое необходимо сообщить веществу массой ​\(m \) ​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​\((L) \) ​ умножить на массу вещества: ​\(Q=Lm \) ​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

Часть 1

1. Испарение и кипение - два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение - два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение - при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение - во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​\(\tau_1 \) ​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть - в газообразном
4) часть воды в жидком состоянии, часть - в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см 3 . Во вторник она увеличилась и стала равной 15,4 г/см 3 . Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см 3 ?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10 -3 кг/м 3 , а плотность насыщенного пара при этой температуре 30·10 -3 кг/м 3 ?

1) 60%
2) 30%
3) 18 %
4) 1,7 %

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​\(0-t_1 \) ​ оба вещества находились в жидком состоянии

Часть 2

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Ответы

Поместим стеклянный сосуд с холодной водой на горелку и будем наблюдать. Скоро дно и стенки сосуда покроются пузырьками; об их происхождении говорилось в § 260. В этих пузырьках, как мы знаем, находятся воздух и пар воды. Пузырьки появляются в тех местах стенок сосуда, где нет полного смачивания. Такими местами могут явиться следы жира на стенке или мелкие трещинки на ней.

Наблюдая за пузырьком при неизменной температуре, мы видим, что он сохраняет свои размеры; значит, давления изнутри и извне на его поверхность взаимно уравновешиваются. Так как внутри пузырька находится воздух, количество которого надо считать постоянным, то это равновесие является устойчивым. Действительно, если бы по какой-либо случайной причине пузырек расширился, то давление воздуха в нем, согласно закону Бойля - Мариотта, уменьшилось бы и внешнее давление, остающееся при этом почти неизменным, снова уменьшило бы пузырек. Рассуждая таким же образом, легко выяснить, почему случайно уменьшившийся пузырек сейчас же снова расширится до прежнего объема. При повышении температуры пузырек постепенно расширяется настолько, что сумма давления воздуха и пара в нем остается равной внешнему давлению. Однако когда пузырек сделается достаточно большим, выталкивающая сила воды заставит его оторваться, подобно тому, как отрывается слишком тяжелая капля воды, повисшая на крыше (рис. 372). При этом между пузырьком и стенкой сосуда образуется все сужающаяся воздушная перемычка (рис. 483) и, наконец, пузырек отрывается, оставляя у стенки небольшое количество воздуха из которого с течением времени разовьется новый пузырек.

Рис. 483. Прилипшие ко дну сосуда с жидкостью и отрывающиеся пузырьки газа

Поднимаясь кверху, оторвавшиеся пузырьки снова уменьшаются в размерах. Почему это происходит? Эти пузырьки содержат пар воды и немного воздуха. Когда пузырек достигает верхних, еще не успевших нагреться слоев воды, то значительная часть водяного пара конденсируется в воду и пузырек уменьшается. Это попеременное увеличение и уменьшение пузырьков сопровождается звуками: закипающая вода «шумит». Наконец, вся вода прогревается в достаточной мере. Тогда поднимающиеся пузырьки уже не уменьшаются в размерах и лопаются на поверхности, выбрасывая пар во внешнее пространство. «Шум» прекращается, и начинается «бульканье» - мы говорим, что вода закипела. Термометр, помещенный в пар над кипящей водой, все время, пока вода кипит, показывает одну и ту же температуру, около .

Очевидно, что при кипении давление паров, образующихся внутри пузырьков у дна сосуда, таково, что пузырьки могут расширяться, преодолевая атмосферное давление, действующее на свободную поверхность воды, а также давление столба воды. Мы приходим к выводу, что кипение происходит при такой температуре, при которой давление насыщенного пара жидкости равно внешнему давлению. Температуру пара кипящей жидкости называют температурой кипения.

Из приведенных рассуждений ясно, что температура кипения должна зависеть от внешнего давления. Это можно легко наблюдать. Поставим стаканчик с теплой водой под колокол воздушного насоса. Откачивая воздух, мы можем заставить воду вскипеть при температуре значительно ниже (рис. 484). Наоборот, при повышении внешнего давления температура кипения повышается. Так, в котлах паровых машин воду нагревают под давлением в несколько атмосфер. Температура кипения при этом значительно превосходит . При давлении около 15 атм температура кипения воды близка к . Когда говорят о температуре кипения жидкости, не указывая давления, всегда имеют в виду температуру кипения при нормальном давлении .

Рис. 484. При откачивании воздуха из-под колокола вода, имеющая температуру значительно ниже , закипает

Зависимость температуры кипения от давления дает нам новый способ измерения атмосферного давления. Измерив температуру кипения воды, можно по таблицам давления пара при разных температурах судить об атмосферном давлении. Если, например, находясь в горах, мы определили, что температура кипения воды около , то отсюда можно заключить (табл. 18), что давление воздуха составляет . Специально приспособленные для таких измерений термометры называют гипсотермометрами. Они устроены так, что дают возможность отсчитывать температуру около с большой точностью (рис. 485).

Рис. 485. Гипсотермометр

Температуры кипения различных жидкостей (при нормальном давлении) сильно разнятся между собой. Это можно видеть из табл. 19.

Таблица 19. Температура кипения некоторых жидкостей при

Жидкость Температура кипения Жидкость Температура кипения
Жидкий гелий -269 Спирт 78
>> водород -253 Вода 100
>> кислород -183 Ртуть 357
>> азот -196 Расплавленный цинк 906
Хлор -34 Расплавленное железо 2880
Эфир -35

Различие температур кипения разных веществ находит большое применение в технике, например при разделении нефтепродуктов. При нагревании нефти раньше всего испаряются наиболее ценные, летучие ее части (бензин), которые можно таким образом отделить от «тяжелых» остатков (масел, мазута).

Различие температур кипения веществ связано с различием в давлении пара при одной и той же температуре. Мы видели, что пар эфира уже при комнатной температуре имеет давление, превышающее половину атмосферного. Поэтому, чтобы давление пара эфира достигло атмосферного, нужно небольшое повышение температуры (до ). Иначе дело обстоит, например, у ртути, имеющей при комнатной температуре совсем ничтожное давление. Давление пара ртути делается равным атмосферному только при значительном повышении температуры (до ).

294.1. Где кипящая вода горячее: на уровне моря, на горе или в глубокой шахте?

294.2. Для некоторых производственных процессов в пищевой промышленности (например, для варки свеклы) требуется температура воды выше . Каким средством этого можно достичь?

294.3. Пользуясь табл. 18, определите наивысшую температуру, которую может иметь вода при давлении и .

294.4. На рис. 486 изображен автоклав (прибор, употребляющийся в химических производствах для процессов, требующих более высокой температуры, чем температура кипения находящейся в нем жидкости). Это - прочный котел с манометром 1, наглухо закрывающийся крышкой так, что пар из него может уходить только через предохранительный клапан 2. Какой температуры достигнет при нагревании котла находящаяся в нем вода, если площадь основания клапана равна и расстояние от опоры 3 до клапана 2 равно 6,5 см, а до гири 4-18 см? Масса гири 1 кг. Массой стержня можно пренебречь.

Рисунок 486. К упражнению 294.4

294.5. Попробуйте вскипятить воду в узкой пробирке, наполненной до края, нагревая ее у дна. Почему в этом случае пузыри выбрасывают воду из пробирки?

Примечание. Нечто подобное происходит в громадных размерах в природе в так называемых гейзерах (в СССР на Камчатке, а также в ряде других стран, например в Исландии). Гейзер - периодически действующий фонтан, выбрасывающий горячую воду из узкого вертикального жерла в земле (рис. 487). Образование пара происходит на глубине нескольких десятков метров. Давление на такой глубине водоема может достигать нескольких атмосфер и вода может нагреваться значительно выше . Когда внизу образуются пузыри пара, то часть воды вытекает, давление падает и парообразование перегретой воды идет с такой интенсивностью, что остающаяся вода выбрасывается на большую высоту.

Рис. 487. Гейзер

294.6. Вскипятите воду в круглодонной колбе и закупорьте ее. Переверните колбу. Если теперь на дно колбы положить немного снега или облить ее холодной водой, то вода в колбе закипит. Объясните явление.

ТЕМПЕРАТУРА КИПЕНИЯ
(точка кипения) - температура, при которой жидкость столь интенсивно превращается в пар (т.е. газ), что в ней образуются паровые пузырьки, которые поднимаются на поверхность и лопаются. Бурное образование пузырьков во всем объеме жидкости и называется кипением. В отличие от простого испарения при кипении жидкость переходит в пар не только со свободной поверхности, но и по всему объему - внутрь образующихся пузырьков. Температура кипения любой жидкости постоянна при заданном атмосферном или ином внешнем давлении, но повышается с повышением давления и понижается с его понижением. Например, при нормальном атмосферном давлении, равном 100 кПа (таково давление на уровне моря), температура кипения воды составляет 100° С. На высоте же 4000 м над уровнем моря, где давление падает до 60 кПа, вода кипит примерно при 85° С, и для того, чтобы сварить пищу в горах, требуется больше времени. По той же причине пища готовится быстрей в кастрюле-"скороварке": давление в ней повышается, а вслед за этим повышается и температура кипящей воды.
ТЕМПЕРАТУРА КИПЕНИЯ НЕКОТОРЫХ ВЕЩЕСТВ (на уровне моря)

Вещество __ Температура, °С
Золото ___________2600
Серебро __________1950
Ртуть _____________356,9
Этиленгликоль _____197,2
Морская вода ______100,7
Вода ______________100,0
Изопропиловый спирт 82,3
Этиловый спирт _____78,3
Метиловый спирт ____64,7
Эфир _______________34,6


Температура кипения вещества зависит также от наличия примесей. Если в жидкости растворено летучее вещество, то температура кипения раствора понижается. И наоборот, если в растворе содержится вещество менее летучее, чем растворитель, то температура кипения раствора будет выше, чем у чистой жидкости.
См. также
ТЕМПЕРАТУРА ЗАТВЕРДЕВАНИЯ ;
ТЕПЛОТА ;
ЖИДКОСТЕЙ ТЕОРИЯ .
ЛИТЕРАТУРА
Крокстон К. Физика жидкого состояния. М., 1978 Новиков И.И. Термодинамика. М., 1984

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ТЕМПЕРАТУРА КИПЕНИЯ" в других словарях:

    Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения при нормальном атмосферном давлении (1013,25 гПа, или 760 мм рт. ст.) называют нормальной температурой кипения или точкой кипения … Большой Энциклопедический словарь

    ТЕМПЕРАТУРА КИПЕНИЯ, температура, при которой вещество переходит из одного состояния (фазы) в другое, т. е. из жидкости в пар или газ. Температура кипения возрастает при увеличении внешнего давления и понижается при его уменьшении. Обычно ее… … Научно-технический энциклопедический словарь

    - (обозначается Ткип, Ts), температура равновесного перехода жидкости в пар при пост. внеш. давлении. При Т. к. давление насыщ. пара над плоской поверхностью жидкости становится равным внеш. давлению, вследствие чего по всему объёму жидкости… … Физическая энциклопедия

    - – температура, при которой жидкость под воздействием нагревания переходит из жидкого состояния в газовое; эта температура кипения зависит от давления. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

    Температура, достигаемая жидкостью при бурлении * * * (Источник: «Объединенный словарь кулинарных терминов») … Кулинарный словарь

    температура кипения - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN boiling temperature … Справочник технического переводчика

    Температура кипения, точка кипения температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как … Википедия

    температура кипения - (Tкип, tкип) температура равновесного перехода жидкости в пар при постоянном внешнем давлении. При температура кипения давление насыщенного пара над плоской поверхностью жидкости становится равным внешнему давлению,… … Энциклопедический словарь по металлургии

    Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения при нормальном атмосферном давлении (1013,25 гПа, или 760 мм рт. ст.) называют нормальной температурой кипения или точкой кипения. * * … Энциклопедический словарь

    температура кипения - 2.17 температура кипения: Температура жидкости, кипящей при давлении окружающей атмосферы 101,3 кПа (760 мм рт. ст). Источник: ГОСТ Р 51330.9 99: Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Ю. А. Лебедев, А. Н. Кизин, Т. С. Папина, И. Ш. Сайфуллин, Ю. Е. Мошкин. В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура…
  • Характеристики углеводородов. Анализ численных данных и их рекомендованные значения. Справочное издание , Лебедев Ю.А.. В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура…

1.5. Кипение и перегревание жидкости.

Если жидкость в сосуде нагревать при постоянном внешнем давлении со свободной поверхности жидкости. Такой процесс парообразования называется испарением. По достижении определенной температуры, называемом температурой кипения, образование пара начинает происходить не только со свободной поверхности, растут и поднимаются на поверхность пузыри пара, увлекая за собой и саму жидкость. Процесс парообразования приобретает бурный характер. Это явление называется кипением.

По существу кипения есть особый вид испарения. Дело в том, что жидкость никогда не бывает физически однородной. В ней всегда имеются пузырьки воздуха или других газов, но часто настолько малые, что они не видимы невооруженным глазом. На поверхности каждого пузырька непрерывно идет испарение жидкости и конденсация пара, пока не наступит состояние динамического равновесия, в котором эти два противоположно направленные процесса компенсируют друг друга. В состоянии механического равновесия сумма давлений воздуха и пара внутри пузырька должна равняться внешнему давлению вне пузырька. Последнее слагается из давления атмосферы и гидростатического давления окружающей жидкости. Если нагреть жидкость до такой температуры, чтобы давление насыщенного пара превзошло давление вне пузырька, то пузырек начнет расти за счет испарения жидкости с его внутренней поверхности и подниматься вверх под действием архимедовой подъемной силы. Двухфазная система – жидкость с воздушными пузырьками – становится механически неустойчивой, и начинается процесс кипения. Граница неустойчивости определяется такой температурой, при которой давление становится насыщенного пара равно сумме атмосферного и гидростатического давления на рассматриваемой высоте. Это и есть температура кипения.

В отличие от температуры тройной точки, которая для всякого вещества является вполне определенной величиной, температура кипения жидкости зависит от внешнего давления. Она повышается при увеличении внешнего давления и понижается при уменьшении. Так, воду можно заставить кипеть при комнатной температуре. Для демонстрации стеклянную колбу с водопроводной водой помещают под колпак воздушного насоса. При откачке воздуха давление на поверхность воды понижается, и при достижении определенной степени раздражения вода закипает. Теплота, необходимая для превращении жидкости в пар, заимствуется у самой жидкости, поэтому она охлаждается. При продолжительной откачке вода может замерзнуть. Для ускорения процесса замерзания воду наливают в мелкое блюдце, чтобы увеличить свободную поверхность, с которой происходит испарение. Для той же цели под колпак воздушного насоса помещается крепкий раствор серной кислоты, поглощающий водные пары. После одной – двух минут откачка воды в блюдце замерзнет.

Понижение температуры кипения жидкости при уменьшении внешнего давления можно демонстрировать и без воздушного насоса. Берется круглодонная колба среднего размера, наполненная наполовину водопроводной водой. Вода в колбе кипятится в течении 15 минут, чтобы образовавшиеся водяные пары вытеснили из колбы воздух. Затем колба снимается, быстро закупоривается каучуковой пробкой, переворачивается вверх дном и помещается на кольцеобразную подставку. Если колба сверху поливать холодной водой, то часть водяных паров конденсируется в жидкость, давление на поверхность воды уменьшается, и она закипает.

Из изложенного следует, что кипение возможно только тогда, когда внутри жидкости имеются пузырьки газа. Если же таковых нет, т.е. жидкость вполне физически однородна, то парообразование внутри жидкости, т.е. кипение, становится невозможным. Такую жидкость можно нагреть выше температуры кипения. Физически однородную жидкость, температура которой при заданном внешнем давлении превосходит температуру кипения, называется перегретой. Можно сказать иначе. Перегретой называется жидкость, находящаяся под давлением ниже давления ее насыщенных паров при заданной температуре. На изотерме Ван – дер – Ваальса перегретая жидкость изображается точками участка LB , так как давление жидкости на этом участке ниже давления на изотерме – изобаре LCG , где оно равно давлению насыщенного пара. Перегретая жидкость метастабильна, или малоустойчива. Пока нет зародышей более устойчивой парообразной фазы, перегретая жидкость может существовать как физически однородное тело. Однако при наличие таких зародышей, например пузырькового воздуха, она становится неустойчивое и переходит в более устойчивое при данной температуре состояние – пар.

Перегретую воду можно получить, например, в кварцевую колбу с гладкими стенками. Колба тщательно промывать сначала серной, азотной или какой – либо другой кислотой, а затем дистиллированной водой. В промытую колбу наливается дистиллированная вода, из которой продолжительным кипячением удаляется растворенный в ней воздух. После этого воду в колбе можно нагреть на газовой горелке до температуры, значительно превышающей температуру кипения, и тем не менее она не будет кипеть, а только интенсивно испаряться со свободной поверхности. Лишь изредка на дне колбы образуется пузырек пара, который быстро растет, отделяется от дна и поднимается на поверхность жидкости, причем размеры его при поднятии сильно возрастают. Затем вода длительное время остается спокойной. Если в такую воду ввести зародыш газообразной формы, например бросить щепотку чая, то она будет бурно закипать, а ее температура быстро понижается до температуры кипения. Это эффективный опыт носит характер взрыва. Для успеха опыта важно, чтобы стенки колбы были гладкими. Всякие шероховатости и острые края способствуют образованию зародышей газообразной формы. От них непрерывно отделяются и поднимаются на поверхность воды пузырьки пара – вода кипит со дна или стенки колбы, перегревание ее трудно и даже совсем невозможно.

Возникает, однако следующий вопрос. Сколько бы ни очищали воду от растворенного в ней воздуха, последний всегда остается в каком – то, хотя и ничтожном, количестве в виде мельчайших пузырьках. Если даже воду полностью очистить от растворенных в ней газов, то в ней все же могут возникать пузырьки пара флуктуационного происхождения.


Порядка 40%), имеет небольшую прочность и твердость (HB = 65 - I30, в зависимости от величины зерна). Феррит, в зависимости от характера протекающих фазовых превращений, в структуре железоуглеродистых сплавов может находиться в виде различных структурных состояний: феррит, как основа структуры сплава (Ф); феррит, как вторая (избыточная) фаза, располагающаяся по границам перлитных колоний, в виде...




Как в азеотропных смесях коннода вертикальна, нода вырождается в точку. 3. Фазовые эффекты и уравнение Ван-дер-Ваальса для бинарных азеотропных смесей. Фазовые эффекты в бинарных азеотропных смесях. На рисунках 3.1 - 3.4 изображены диаграммы объем - состав фаз, и энтропия – состав фаз для азеотропа с минимумом температуры кипения. Если рассматриваемый состав равен составу...




Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или...