Определение константы равновесия реакции. Химическое равновесие

В 1885 году французским физиком и химиком Ле Шателье был выведен, а в 1887 году немецким физиком Брауном обоснован закон химического равновесия и константа химического равновесия, а также изучена их зависимость от влияния различных внешних факторов.

Суть химического равновесия

Равновесие - состояние, означающее, что вещи всегда движутся. Продукты разлагаются на реактивы, а реактивы объединяются в продукты. Вещи движутся, но концентрации остаются неизменными. Реакция записывается с двойной стрелкой вместо знака равенства, чтобы показать, что она обратима.

Классические закономерности

Еще в прошлом веке химиками были открыты определенные закономерности, которые предусматривают вероятность изменения направления реакции в одной и той же емкости. Знания о том, как протекают химические реакции, невероятно важны, как для лабораторных исследований, так и промышленного производства. При этом большое значение имеет возможность контролировать все эти явления. Человеку свойственно вмешиваться во многие природные процессы, в особенности это касается обратимых, чтобы потом использовать их себе на благо. От знаний о химических реакциях будет больше пользы, если в совершенстве владеть рычагами управления ими.

Закон действующих масс в химии использую химики, чтобы правильно рассчитывать скорости протекания реакций. Он дает четкое представление о том, что ни один не будет доведен до конца в случае, если он будет проходить в системе закрытого типа. Молекулы образующихся веществ находятся в постоянном и беспорядочном движении, и может вскоре возникнуть обратная реакция, при которой будут восстанавливаться молекулы исходного материала.

В промышленности чаще всего используют открытые системы. Сосуды, аппараты и другие емкости, где проходят химические реакции, остаются незапертыми. Это необходимо для того, чтобы во время этих процессов можно было извлечь нужный продукт и избавиться от бесполезных продуктов реакции. Например, уголь сжигается в открытых топках, цемент производится в печах открытого типа, домны функционируют при постоянной подаче воздуха, а аммиак синтезируется при непрерывном удалении самого аммиака.

Обратимые и необратимые химические реакции

Исходя из названия, можно дать соответствующие определения: необратимыми считаются реакции, доводимые до конца, не изменяющие своего направления и протекающие по заданной траектории вне зависимости от перепадов давления и температурных колебаний. Их отличительной особенностью является то, что некоторые продукты могут покидать сферу реакции. Таким образом, например, можно получить газ (CaCO 3 = CaO + CO 2), осадок (Cu(NO 3) 2 + H 2 S = CuS + 2HNO 3) или другие также будет считаться необратимой, если во время процесса выделяется большое количество тепловой энергии, например: 4P + 5O 2 = 2P 2 O 5 + Q.

Практически все реакции, которые происходят в природе, являются обратимыми. Независимо от таких внешних условий, как давление и температура, практически все процессы могут протекать одновременно в разных направлениях. Как гласит закон действующих масс в химии, количество поглощенной теплоты будет равно количеству выделенной, это значит, что если одна реакция была экзотермической, то вторая (обратная) буде эндотермической.

Химическое равновесие: константа химического равновесия

Реакции - это «глаголы» химии - деятельность, которую изучают химики. Многие реакции переходят к их завершению, а затем останавливаются, а это означает, что реагенты полностью преобразуются в продукты, не имея возможности вернуться в исходное состояние. В некоторых случаях реакция действительно необратима, например, когда сжигание изменяет как физические, так и химические Однако существует множество других обстоятельств, в которых является не только возможной, но и непрерывной, так как продукты первой реакции становятся реагентами во второй.

Динамическое состояние, в котором концентрации реагентов и продуктов остаются постоянными, называется равновесием. Можно предсказать поведение веществ с помощью определенных законов, которые применяются в отраслях, стремящихся снизить издержки производства конкретных химических веществ. Для понимания процессов, которые сохраняют или потенциально угрожают здоровью людей, также полезным является понятие химического равновесия. Константа химического равновесия представляет собой значение фактора реакции, которое зависит от ионной силы и температуры, и не зависит от концентраций реагентов и продуктов в растворе.

Вычисление константы равновесия

Эта величина является безразмерной, то есть не имеющей определенного количества единиц. Хотя расчет обычно записывается для двух реагентов и двух продуктов, он работает для любого количества участников реакции. Расчет и интерпретация константы равновесия зависят от того, связана ли химическая реакция с однородным или гетерогенным равновесием. Это значит, что все вступающие в реакцию компоненты могут быть чистыми жидкостями или газами. Для реакций, которые достигают гетерогенного равновесия, присутствует, как правило, не одна фаза, а как минимум две. Например, жидкости и газы или и жидкости.

Значение константы равновесия

Для любой заданной температуры для константы равновесия существует только одно значение, которое изменяется только в том случае, если температура, при которой происходит реакция, изменяется в ту или иную сторону. Можно сделать некоторые прогнозы относительно химической реакции, исходя из того, является ли постоянная равновесия большой или малой. Если значение очень велико, то равновесие благоприятствует реакции вправо и получается больше продуктов, чем было реагентов. Реакцию в этом случае можно назвать «полной» или «количественной».

Если значение константы равновесия невелико, то оно благоприятствует реакции влево, где количество реагентов было больше, чем образовавшихся продуктов. Если это значение стремится к нулю, можно считать, что реакция не возникает. Если же значения константы равновесия для прямой и обратной реакции почти одинаковы, то количество реагентов и продуктов будет тоже почти одинаковым. Этот тип реакции считается обратимым.

Рассмотрим конкретную обратимую реакцию

Возьмем таких два химических элемента, как йод и водород, которые при смешивании дают новое вещество - иодоводород.

За v 1 примем скорость прямой реакции, за v 2 - скорость обратной реакции, k - константа равновесия. Используя закон действия масс, получаем следующее выражение:

v 1 = k 1 * c(H 2) * c(I 2),

v 2 = k 2 * c 2 (HI).

При смешивании молекул йода (I 2) и водорода (H 2) начинается их взаимодействие. На начальном этапе концентрация этих элементов максимальная, а вот к концу реакции максимальной будет концентрация нового соединения - иодоводорода (HI). Соответственно, разными будут и скорости реакций. В самом начале они будут максимальными. Со временем наступает момент, когда эти значения будут равными, он и является состоянием, которое называется химическим равновесием.

Выражение константы химического равновесия, как правило, обозначают с применением квадратных скобок: , , . Так как при состоянии равновесия скорости равны, то:

k 1 = k 2 2 ,

так получаем уравнение константы химического равновесия:

k 1 /k 2 = 2 / = K.

Принцип Ле Шателье-Брауна

Существует следующая закономерность: если на систему, которая находится в равновесии, произвести определенное воздействие (изменить условия химического равновесия путем изменения температуры или давления, например), то баланс будет смещаться, чтобы частично противодействовать эффекту изменения. В дополнение к химии этот принцип также применим в несколько разных формах к областям фармакологии и экономики.

Константа химического равновесия и способы ее выражения

Равновесное выражение может быть выражено в терминах концентрации продуктов и реагентов. Только химические вещества в водной и газообразной фазах включены в равновесную формулу, поскольку концентрации жидкостей и твердых веществ не изменяются. Какие факторы влияют на химическое равновесие? Если в нем участвует чистая жидкость или твердое вещество, считается, что оно имеет К= 1, и соответственно перестает браться в расчет, за исключением высококонцентрированных растворов. Например, чистая вода имеет активность 1.

Другим примером является твердый углерод, который может образовываться реакцией двух молекул монооксида карбона с образованием углекислого газа и углерода. Факторы, которые могут повлиять на равновесие, включают в себя добавление реагента или продукта (изменение концентрации влияет на баланс). Добавление реагента может привести к равновесию справа в химическом уравнении, где появляется больше форм продукта. Добавление продукта может привести к равновесию слева, так как больше становится форм реагентов.

Равновесие возникает, когда реакция, проходящая в обоих направлениях, имеет неизменное соотношение продуктов и реагентов. В целом, химическое равновесие статично, так как количественное соотношение продуктов и реагентов постоянны. Однако более пристальный взгляд показывает, что равновесие на самом деле является очень динамичным процессом, так как реакция движется в обоих направлениях в равном темпе.

Динамическое равновесие является примером функции устойчивого состояния. Для системы в устойчивом состоянии наблюдаемое в настоящее время поведение продолжается и в будущем. Поэтому, как только реакция достигнет равновесия, отношение концентраций продукта и реагента останется таким же, хотя реакция продолжается.

Как просто рассказать о сложном?

Такие понятия, как химическое равновесие и константа химического равновесия, являются достаточно сложными для понимания. Возьмем пример из жизни. Вы когда-нибудь застревали на мосту между двумя городами и обращали внимание на то, что движение в другом направлении плавное и размеренное, в то время как вы безнадежно застряли в пробке? Это нехорошо.

Что, если бы машины размеренно и с одинаковой скоростью двигались с обеих сторон? Оставалось бы количество автомобилей в обоих городах постоянным? Когда скорость въезда и выезда в оба города одинакова, а количество автомобилей в каждом городе стабильно с течением времени, это означает, что весь процесс находится в динамическом равновесии.

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Принцип Ле Шателье

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

;

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Количественная характеристика, показывающая направление реакции и смещение концентрации веществ, называется константой равновесия химической реакции. Константа равновесия зависит от температуры и природы реагентов.

Обратимые и необратимые реакции

Все реакции можно разделить на два типа:

  • обратимые , одновременно протекающие в двух взаимно противоположных направлениях;
  • необратимые , протекающие в одном направлении с полным расходом хотя бы одного исходного вещества.

При необратимых реакциях обычно образуются нерастворимые вещества в виде осадка или газа. К таким реакциям относятся:

  • горение:

    C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O;

  • разложение:

    2KMnO 4 → K 2 MnO 4 + MnO 2 + H 2 O;

  • присоединение с образованием осадка или газа:

    BaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl.

Рис. 1. Образование осадка BaSO 4 .

Обратимые реакции возможны только в определённых неизменных условиях. Исходные вещества дают новое вещество, которое тут же распадается на составные части и собирается вновь. Например, в результате реакции 2NO + O 2 ↔ 2NO 2 оксид азота (IV) легко разлагается на оксид азота (II) и кислород.

Равновесие

Через определённое время скорость обратимой реакции замедляется. Достигается химическое равновесие - состояние, при котором не происходит изменения концентрации исходных веществ и продуктов реакции с течением времени, так как скорость прямой и обратной реакций уравниваются. Равновесие возможно только в гомогенных системах, то есть все реагирующие вещества являются либо жидкостями, либо газами.

Рассмотрим химическое равновесие на примере реакции взаимодействия водорода с йодом:

  • прямая реакция -

    H 2 + I 2 ↔ 2HI;

  • обратная реакция -

    2HI ↔ H 2 + I 2 .

Как только смешиваются два реагента - водород и йод - йодоводорода ещё не существует, так как простые вещества только вступают в реакцию. Большое количество исходных веществ активно реагируют друг с другом, поэтому скорость прямой реакции будет максимальной. При этом обратная реакция не протекает, и скорость её равна нулю.

Скорость прямой реакции можно выразить графически:

ν пр = k пр ∙ ∙ ,

где k пр - константа скорости прямой реакции.

Со временем реагенты расходуются, их концентрация снижается. Соответственно, скорость прямой реакции уменьшается. Одновременно с этим увеличивается концентрация нового вещества - йодоводорода. При накоплении он начинает разлагаться, и скорость обратной реакции повышается. Её можно выразить как

ν обр = k обр ∙ 2 .

Йодоводород в квадрате, так как коэффициент молекулы равен двум.

В определённый момент скорости прямой и обратной реакции уравниваются. Наступает состояние химического равновесия.

Рис. 2. График зависимости скорости реакции от времени.

Равновесие можно сместить либо в сторону исходных веществ, либо в сторону продуктов реакции. Смещение под воздействием внешних факторов называется принципом Ле Шателье. На равновесие влияют температура, давление, концентрация одного из веществ.

Расчёт константы

В состоянии равновесия обе реакции идут, но при этом концентрации веществ находятся в равновесии (образуются равновесные концентрации), так как уравновешенны скорости (ν пр = ν обр).

Химическое равновесие характеризуется константой химического равновесия, которая выражается сводной формулой:

K p = k пр / k обр = const.

Константы скорости реакции можно выразить через соотношение скорости реакции. Возьмём условное уравнение обратной реакции:

aA + bB ↔ cC + dD.

Тогда скорости прямой и обратной реакции будут равны:

  • ν пр = k пр ∙ [A] p a ∙ [B] p b
  • ν обр = k обр ∙ [C] p c ∙ [D] p d .

Соответственно, если

ν пр = ν обр,

k пр ∙ [A] p a ∙ [B] p b = k обр ∙ [C] p c ∙ [D] p d .

Отсюда можно выразить соотношение констант:

k обр / k пр = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Это соотношение равно константе равновесия:

K p = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Рис. 3. Формула константы равновесия.

Величина показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции.

Что мы узнали?

Реакции в зависимости от конечных продуктов классифицируются на обратимые и необратимые. Обратимые реакции протекают в обе стороны: исходные вещества образуют конечные продукты, которые разлагаются на исходные вещества. В ходе реакции скорости прямой и обратной реакций уравновешиваются. Такое состояние называется химическим равновесием. Оно может быть выражено как соотношение произведения равновесных концентраций продуктов реакции к произведению разновесных концентраций исходных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.8 . Всего получено оценок: 64.

Химическим равновесием называется такое состояние обратимой химической реакции

aA + b B = c C + d D,

при котором с течением времени не происходит изменения концентраций реагирующих веществ в реакционной смеси. Состояние химического равновесия характеризуется константой химического равновесия :

где C i – концентрации компонентов в равновесной идеальной смеси.

Константа равновесия может быть выражена также через равновесные мольные доли X i компонентов:

Для реакций, протекающих в газовой фазе, константу равновесия удобно выражать через равновесные парциальные давления P i компонентов:

Для идеальных газов P i = C i RT и P i = X i P , где P – общее давление, поэтому K P , K C и K X связаны следующим соотношением:

K P = K C (RT) c+d–a–b = K X P c+d–a–b . (9.4)

Константа равновесия связана с r G o химической реакции:

(9.5)

(9.6)

Изменение r G или r F в химической реакции при заданных (не обязательно равновесных) парциальных давлениях P i или концентрациях C i компонентов можно рассчитать по уравнению изотермы химической реакции (изотермы Вант-Гоффа ):

. (9.7)

. (9.8)

Согласно принципу Ле Шателье , если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится так, чтобы уменьшить эффект внешнего воздействия. Так, повышение давления сдвигает равновесие в сторону уменьшения количества молекул газа. Добавление в равновесную смесь какого-либо компонента реакции сдвигает равновесие в сторону уменьшения количества этого компонента. Повышение (или понижение) температуры сдвигает равновесие в сторону реакции, протекающей с поглощением (выделением) теплоты.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобары Вант-Гоффа )

(9.9)

и изохоры химической реакции (изохоры Вант-Гоффа )

. (9.10)

Интегрирование уравнения (9.9) в предположении, что r H реакции не зависит от температуры (что справедливо в узких интервалах температур), дает:

(9.11)

(9.12)

где C – константа интегрирования. Таким образом, зависимость ln K P от 1 должна быть линейной, а наклон прямой равен – r H /R .

Интегрирование в пределах K 1 , K 2 , и T 1, T 2 дает:

(9.13)

(9.14)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать r H реакции. Соответственно, зная r H реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре.

ПРИМЕРЫ

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K. f G o для CO(г) и CH 3 OH(г) при 500 К равны –155.41 кДж. моль –1 и –134.20 кДж. моль –1 соответственно.

Решение. G o реакции:

r G o = f G o (CH 3 OH) – f G o (CO) = –134.20 – (–155.41) = 21.21 кДж. моль –1 .

= 6.09 10 –3 .

Пример 9-2. Константа равновесия реакции

равна K P = 1.64 10 –4 при 400 o C. Какое общее давление необходимо приложить к эквимолярной смеси N 2 и H 2 , чтобы 10% N 2 превратилось в NH 3 ? Газы считать идеальными.

Решение. Пусть прореагировало моль N 2 . Тогда

N 2 (г) + 3H 2 (г) = 2NH 3 (г)
Исходное количество 1 1
Равновесное количество 1– 1–3 2 (Всего: 2–2)
Равновесная мольная доля:

Следовательно, K X = и K P = K X . P –2 = .

Подставляя = 0.1 в полученную формулу, имеем

1.64 10 –4 =, откуда P = 51.2 атм.

Пример 9-3. Константа равновесия реакции

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K равна K P = 6.09 10 –3 . Реакционная смесь, состоящая из 1 моль CO, 2 моль H 2 и 1 моль инертного газа (N 2) нагрета до 500 K и общего давления 100 атм. Рассчитать состав равновесной смеси.

Решение. Пусть прореагировало моль CO. Тогда

CO(г) + 2H 2 (г) = CH 3 OH(г)
Исходное количество: 1 2 0
Равновесное количество: 1– 2–2
Всего в равновесной смеси: 3–2 моль компонентов + 1 моль N 2 = 4–2 моль
Равновесная мольная доля

Следовательно, K X = и K P = K X . P –2 = .

Таким образом, 6.09 10 –3 = .

Решая это уравнение, получаем = 0.732. Соответственно, мольные доли веществ в равновесной смеси равны: = 0.288, = 0.106, = 0.212 и = 0.394.

Пример 9-4. Для реакции

N 2 (г) + 3H 2 (г) = 2NH 3 (г)

при 298 К K P = 6.0 10 5 , а f H o (NH 3) = –46.1 кДж. моль –1 . Оценить значение константы равновесия при 500 К.

Решение. Стандартная мольная энтальпия реакции равна

r H o = 2 f H o (NH 3) = –92.2 кДж. моль –1 .

Согласно уравнению (9.14), =

Ln (6.0 10 5) + = –1.73, откуда K 2 = 0.18.

Отметим, что константа равновесия экзотермической реакции уменьшается с ростом температуры, что соответствует принципу Ле Шателье.

ЗАДАЧИ

  1. При 1273 К и общем давлении 30 атм в равновесной смеси
  2. CO 2 (г) + C(тв) = 2CO(г)

    содержится 17% (по объему) CO 2 . Сколько процентов CO 2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25% CO 2 ?

  3. При 2000 o C и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции
  4. H 2 O(г) = H 2 (г) + 1/2O 2 (г) при этих условиях.

  5. Константа равновесия реакции
  6. CO(г) + H 2 O(г) = CO 2 (г) + H 2 (г)

    при 500 o C равна K p = 5.5. Смесь, состоящая из 1 моль CO и 5 моль H 2 O, нагрели до этой температуры. Рассчитать мольную долю H 2 O в равновесной смеси.

  7. Константа равновесия реакции
  8. N 2 O 4 (г) = 2NO 2 (г)

    при 25 o C равна K p = 0.143. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N 2 O 4 при этой температуре.

  9. Сосуд объемом 3 л, содержащий 1.79 10 –2 моль I 2 , нагрели до 973 K. Давление в сосуде при равновесии оказалось равно 0.49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 K для реакции
  10. I 2 (г) = 2I (г).

  11. Для реакции
  12. при 250 o C r G o = –2508 Дж. моль –1 . При каком общем давлении степень превращения PCl 5 в PCl 3 и Cl 2 при 250 o C составит 30%?

  13. Для реакции
  14. 2HI(г) = H 2 (г) + I 2 (г)

    константа равновесия K P = 1.83 10 –2 при 698.6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I 2 и 0.2 г H 2 в трехлитровом сосуде? Чему равны парциальные давления H 2 , I 2 и HI?

  15. Сосуд объемом 1 л, содержащий 0.341 моль PCl 5 и 0.233 моль N 2 , нагрели до 250 o C. Общее давление в сосуде при равновесии оказалось равно 29.33 атм. Считая все газы идеальными, рассчитать константу равновесия при 250 o C для протекающей в сосуде реакции
  16. PCl 5 (г) = PCl 3 (г) + Cl 2 (г)

  17. Константа равновесия реакции
  18. CO(г) + 2H 2 (г) = CH 3 OH(г)

    при 500 K равна K P = 6.09 10 –3 . Рассчитать общее давление, необходимое для получения метанола с 90% выходом, если CO и H 2 взяты в соотношении 1: 2.

  19. При 25 o C f G o (NH 3) = –16.5 кДж. моль –1 . Рассчитать r G реакции образования NH 3 при парциальных давлениях N 2 , H 2 и NH 3 , равных 3 атм, 1 атм и 4 атм соответственно. В какую сторону реакция будет идти самопроизвольно при этих условиях?
  20. Экзотермическая реакция
  21. CO(г) + 2H 2 (г) = CH 3 OH(г)

    находится в равновесии при 500 K и 10 бар. Если газы идеальные, как повлияют на выход метанола следующие факторы: а) повышение T ; б) повышение P ; в) добавление инертного газа при V = const; г) добавление инертного газа при P = const; д) добавление H 2 при P = const?

  22. Константа равновесия газофазной реакции изомеризации борнеола (C 10 H 17 OH) в изоборнеол равна 0.106 при 503 K. Смесь 7.5 г борнеола и 14.0 г изоборнеола поместили в сосуд объемом 5 л и выдерживали при 503 K до достижения равновесия. Рассчитать мольные доли и массы борнеола и изоборнеола в равновесной смеси.
  23. Равновесие в реакции
  24. 2NOCl(г) = 2NO(г) + Cl 2 (г)

    устанавливается при 227 o C и общем давлении 1.0 бар, когда парциальное давление NOCl равно 0.64 бар (изначально присутствовал только NOCl). Рассчитать r G o для реакции. При каком общем давлении парциальное давление Cl 2 будет равно 0.10 бар?

  25. Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H 2 и 1 части N 2 , чтобы получить равновесную смесь, содержащую 10% NH 3 по объему при 400 o C. Константа равновесия для реакции
  26. N 2 (г) + 3H 2 (г) = 2NH 3 (г)

    при 400 o C равна K = 1.60 10 –4 .

  27. При 250 o C и общем давлении 1 атм PCl 5 диссоциирован на 80% по реакции
  28. PCl 5 (г) = PCl 3 (г) + Cl 2 (г).

    Чему будет равна степень диссоциации PCl 5 , если в систему добавить N 2 , чтобы парциальное давление азота было равно 0.9 атм? Общее давление поддерживается равным 1 атм.

  29. При 2000 o C для реакции
  30. N 2 (г) + O 2 (г) = 2NO(г)

    K p = 2.5 10 –3 . В равновесной смеси N 2 , O 2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N 2 и 16% O 2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

  31. Рассчитать стандартную энтальпию реакции, для которой константа равновесия
    а) увеличивается в 2 раза, б) уменьшается в 2 раза при изменении температуры от 298 К до 308 К.
  32. Зависимость константы равновесия реакции 2C 3 H 6 (г) = C 2 H 4 (г) + C 4 H 8 (г) от температуры между 300 К и 600 К описывается уравнением

ln K = –1.04 –1088 /T +1.51 10 5 /T 2 .

Константа химического равновесия

Количественной характеристикой химического равновесия является константа равновесия , которая может быть выражена через равновесные концентрации С i , парциальные давления P i или мольные доли X i реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. На основании уравнения состояния идеального газа, записанного в виде соотношения P i = C i RT, где С i = n i /V, и закона Дальтона для идеальной газовой смеси, выраженного уравнением P = ΣP i , можно вывести соотношения между парциальным давлением P i , молярной концентрацией С i и мольной долей X i i-го компонента:

Отсюда получаем соотношение между K c , K p и K x:

Здесь Δν – изменение числа молей газообразных веществ в течение реакции:

Δν = – ν 1 – ν 2 – ... + ν" 1 + ν" 2 + ...

Величина константы равновесия K x , в отличие от констант равновесия K c и K p , зависит от общего давления Р.

Выражение для константы равновесия элементарной обратимой реакции может быть выведено из кинетических представлений. Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества. Скорость прямой реакции V 1 в этот момент максимальна, а скорость обратной V 2 равна нулю:

По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

Приняв, что V 1 = V 2 , можно записать:

Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л. Приведённый вывод выражения для константы равновесия, однако, исходит из ложной в общем случае посылки, что скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам. Как известно, в общем случае показатели степени при концентрациях реагентов в кинетическом уравнении химической реакции не совпадают со стехиометрическими коэффициентами.

11. Окислительно-восстановительные реакции: определение, основные понятия, сущность окисления и восстановления, важнейшие окислители и восстановители реакции.

Окислительно-восстановительными называют процессы, которые, сопровождаются смещением электронов от одних свободных или связанных атомов к другим. Поскольку в таких случаях имеет значение не степень смещения, а только число смещенных электронов, то принято условно считать смещение всегда полным и говорить об отдаче или смещении электронов.

Если атом или ион элемента отдает или принимает электроны, то в первом случае степень окисления элемента повышается, и он переходит в окисленную форму (ОФ), а во втором – понижается, и элемент переходит в восстановленную форму (ВФ). Обе формы составляют сопряженную окислительно-восстановительную пару. В каждой окислительно-восстановительной реакции участвуют две сопряженные пары. Одна из них соответствует переходу окислителя, принимающего электроны, в его восстановленную форму (ОФ 1 →ВФ 1), а другая – переходу восстановителя, отдающего электроны, в его окисленную форму (ВФ 2 →ОФ 2), например:

Cl 2 + 2 I – → 2 Cl – + I 2

ОФ 1 ВФ 1 ВФ 2 ОФ 2

(здесь Cl 2 – окислитель, I – – восстановитель)

Таким образом, одна и та же реакция всегда является одновременно процессом окисления восстановителя и процессом восстановления окислителя.

Коэффициенты в уравнениях окислительно-восстановительных реакций могут быть найдены методами электронного баланса и электронно-ионного баланса. В первом случае число принятых или отданных электронов определяется по разности степеней окисления элементов в исходном и конечном состояниях. Пример:

HN 5+ O 3 + H 2 S 2– → N 2+ O + S + H 2 O

В этой реакции степень окисления меняют два элемента: азот и сера. Уравнения электронного баланса:

Доля диссоциированных молекул H 2 S незначительна, поэтому в уравнение подставляется не ион S 2– , а молекула H 2 S. Вначале уравнивается баланс частиц. При этом в кислой среде для уравнивания используются ионы водорода, добавляемые к окисленной форме, и молекулы воды, добавляемые к восстановленной форме. Затем уравнивается баланс зарядов, и справа от черты указываются коэффициенты, уравнивающие количество отданных и принятых электронов. После этого внизу записывается суммарное уравнение с учетом коэффициентов:

Получили сокращенное ионно-молекулярное уравнение. Добавив к нему ионы Na + и K + , получим аналогичное уравнение в полной форме, а также молекулярное уравнение:

NaNO 2 + 2 KMnO 4 + 2 KOH → NaNO 3 + 2 K 2 MnO 4 + H 2 O

В нейтральной среде баланс частиц уравнивается путем добавления молекул воды в левую часть полуреакций, а в правую часть добавляются ионы H + или OH – :

I 2 + Cl 2 + H 2 O → HIO 3 + HCl

Исходные вещества не являются кислотами или основаниями, поэтому в начальный период протекания реакции среда в растворе близка к нейтральной. Уравнения полуреакций:

I 2 + 6 H 2 O + 10e → 2 IO 3 – + 12 H +
Cl 2 + 2e → 2 Cl –
I 2 + 5 Cl 2 + 6 H 2 O → 2 IO 3 – + 12 H + + 10 Cl –

Уравнение реакции в молекулярной форме:

I 2 + 5 Cl 2 + 6 H 2 O → 2 HIO 3 + 10 HCl.

ВАЖНЕЙШИЕ ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ. КЛАССИФИКАЦИЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Пределы окисления и восстановления элемента выражаются максимальным и минимальным значениями степеней окисления *. В этих крайних состояниях, определяемых положением в таблице Менделеева, элемент имеет возможность проявить только одну функцию – окислителяили восстановителя. Соответственно и вещества, содержащие элементы в этих степенях окисления, являются только окислителями (HNO 3 , H 2 SO 4 ,HClO 4 , KMnO 4 , K 2 Cr 2 O 7 и др.) или только восстановителями (NH 3 , H 2 S, галогеноводороды, Na 2 S 2 O 3 и др.). Вещества, содержащие элементы в промежуточных степенях окисления, могут быть как окислителями, так и восстановителями (HClO, H 2 O 2 , H 2 SO 3 и др.).

Окислительно-восстановительные реакции разделяются на три основных типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования.

К первому типу относятся процессы, в которых атомы элемента-окислителя и элемента-восстановителя входят в состав разных молекул.

Внутримолекулярными называются реакции, в которых окислитель и восстановитель в виде атомов разных элементов находятся в составе одной и той же молекулы. Например, термическое разложение хлората калия по уравнению:

2 KClO 3 → 2 KCl + 3 O 2

Реакциями диспропорционирования называют процессы, в которых окислителем и восстановителем является один и тот же элемент в одной и той же степени окисления, которая в реакции одновременно как снижается, так и повышается, например:

3 HClO → HClO 3 + 2 HCl

Возможны также реакции обратного диспропорционирования. К ним относятся внутримолекулярные процессы, в которых окислителем и восстановителем является один и тот же элемент, но в виде атомов, находящихся в разной степени окисления и выравнивающих ее в результате реакции, например.