Системы уравнений содержащих только тригонометрические функции. Тригонометрические уравнения

Решение тригонометрических уравнений и систем тригонометрических уравнений основывается на решении простейших тригонометрических уравнений.

Напомним основные формулы для решения простейших тригонометрических уравнений.

Решение уравнений вида sin(x) = a.

При |a|< = 1 x = (-1)^k *arcsin(a) +π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида cos(x) = a.

При |a|< = 1 x = ±arccos(a) +2*π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида tg(x) = a.

x = arctg(a) + π*k, где k принадлежит Z.

Решение уравнений вида ctg(x) = a.

x = arcctg(a)+ π*k, где k принадлежит Z.

Некоторые частые случаи:

sin(x) =1; x = π/2 +2* π*k, где k принадлежит Z.

sin(x) = 0; x = π*k, где k принадлежит Z.

sin(x) = -1; x = - π/2 +2* π*k, где k принадлежит Z.

cos(x) = 1; x = 2* π*k, где k принадлежит Z.

cos(x) = 0; x= π/2 + π*k, где k принадлежит Z.

cos(x) = -1; x = π+2* π*k, где k принадлежит Z.

Рассмотрим несколько примеров:

Пример 1. Решить тригонометрическое уравнение 2*(sin(x))^2 + sin(x) -1 = 0.

Уравнения такого вида решаются сведение к квадратному уравнению заменой переменной.

Пусть у = sin(x). Тогда получаем,

2*y^2 + y - 1 = 0.

Решаем полученное увадратное уравнение одним из известных способов.

y1 = 1/2, y2 = -1.

Следовательно, получаем два простейших тригонометрических уравнения которые решаются по формулам, указанным выше.

sin(x) = 1/2, x = ((-1)^k)*arcsin(1/2) + pi*k = ((-1)^k)*pi/6 + pi*k, длю любого целого k.

sin(x) = -1, x = - pi/2 +2* pi*n, где n принадлежит Z.

Пример 2. Решить уравнение 6*(sin(x))^2 + 5*cos(x) – 2 = 0.

По основному тригонометрическому тождеству заменяем (sin(x))^2 на 1 - (cos(x))^2

Получаем квадратное уравнение относительно cos(x):

6*(cos(x))^2 – 5*cos(x) - 4 = 0.

Вводим замену y=cos(x).

6*y^2 - 5*y - 4 = 0.

Решаем полученное квадратное уравнение y1 = -1/2, y2 = 1(1/3).

Так как y = cos(x), а косинус не может быть больше единицы, получаем одно простейшее тригонометрическое уравнение.

x = ±2*pi/3+2*pi*k, при любом целом k.

Пример 3. tg(x) + 2*ctg(x) = 3.

Введем переменную y = tg(x). Тогда 1/y = ctg(x). Получаем

Умножаем на y не равное нулю, получаем квадратное уравнение.

y^2 – 3*y + 2 = 0.

Решаем его:

tg(x) = 2, x = arctg(2)+pi*k, для любого целого k.

tg(x) = 1, x = arctg(1) + pi*k, pi/4 +pi*k, для любого целого k.

Пример 4. 3*(sin(x))^2 – 4*sin(x)*cos(x) + (cos(x))^2 = 0.

Это уравнение сводится к квадратному делением либо на (cos(x))^2, либо на (sin(x))^2. При делении на (cos(x)^2 получим

3*(tg(x))^2 – 4*tg(x) +1 = 0.

tg(x) = 1, x = pi/4+pi*n, для любого целого n

tg(x) = 1/3, x = arctg(1/3) + pi*k, для любого целого k.

Пример 4. Решить систему уравнений

{ sin(x) = 2*sin(y)

Из пергового уравнения выразим y,

Тогда получим, 2*sin(y) = 2*sin(x-5*pi/3) = 2*(sin(x)*cos(5*pi/3) - cos(x)*sin(5*pi/3)) = 2*(sin(x)*(1/2) –((√3)/2)*cos(x)) = sinx + √3*cos(x).

Методы решения тригонометрических уравнений

Введение 2

Методы решения тригонометрических уравнений 5

Алгебраический 5

Решение уравнений с помощью условия равенства одноимённых тригонометрических функций 7

Разложение на множители 8

Приведение к однородному уравнению 10

Введение вспомогательного угла 11

Преобразование произведения в сумму 14

Универсальная подстановка 14

Заключение 17

Введение

До десятого класса порядок действий многих упражнений, ведущий к цели, как правило, однозначно определен. Например, линейные и квадратные уравнения и неравенства, дробные уравнения и уравнения, приводимые к квадратным, и т.п. Не разбирая подробно принцип решения каждого из упомянутых примеров, отметим то общее, что необходимо для их успешного решения.

В большинстве случаев надо установить, к какому типу относится задача, вспомнить последовательность действий, ведущих к цели, и выполнить эти действия. Очевидно, что успех или неуспех ученика в овладении приемами решения уравнений зависит главным образом от того, насколько он сумеет правильно определить тип уравнения и вспомнить последовательность всех этапов его решения. Разумеется, при этом предполагается, что ученик владеет навыками выполнения тождественных преобразований и вычислений.

Совершенно иная ситуация получается, когда школьник встречается с тригонометрическими уравнениями. При этом установить факт, что уравнение является тригонометрическим, нетрудно. Сложности возникают при нахождении порядка действий, которые бы привели к положительному результату. И здесь перед учеником встают две проблемы. По внешнему виду уравнения трудно определить тип. А не зная типа, почти невозможно выбрать нужную формулу из нескольких десятков, имеющихся в распоряжении.

Чтобы помочь ученикам найти верную дорогу в сложном лабиринте тригонометрических уравнений, их сначала знакомят с уравнениями, которые после введения новой переменной приводятся к квадратным. Затем решают однородные уравнения и приводимые к ним. Все заканчивается, как правило, уравнениями, для решения которых надо разложить на множители левую часть, приравняв затем каждый из множителей к нулю.

Понимая, что разобранных на уроках полутора десятков уравнений явно недостаточно, чтобы пустить ученика в самостоятельное плавание по тригонометрическому "морю", учитель добавляет от себя еще несколько рекомендаций.

Чтобы решить тригонометрическое уравнение, надо попытаться:

Привести все функции входящие в уравнение к «одинаковым углам»;

Привести уравнение к "одинаковым функциям";

Разложить левую часть уравнения на множители и т.п.

Но, несмотря на знание основных типов тригонометрических уравнений и нескольких принципов поиска их решения, многие ученики по-прежнему оказываются в тупике перед каждым уравнением, незначительно отличающимся от тех, что решались раньше. Остается неясным, к чему следует стремиться, имея то или иное уравнение, почему в одном случае надо применять формулы двойного угла, в другом - половинного, а в третьем - формулы сложения и т.д.

Определение 1. Тригонометрическим называется уравнение, в котором неизвестное содержится под знаком тригонометрических функций.

Определение 2. Говорят, что в тригонометрическом уравнении одинаковые углы, если все тригонометрические функции, входящие в него, имеют равные аргументы. Говорят, что в тригонометрическом уравнении одинаковые функции, если оно содержит только одну из тригонометрических функций.

Определение 3. Степенью одночлена, содержащего тригонометрические функции, называется сумма показателей степеней тригонометрических функций, входящих в него.

Определение 4. Уравнение называется однородным, если все одночлены, входящие в него, имеют одну и ту же степень. Эта степень называется порядком уравнения.

Определение 5. Тригонометрическое уравнение, содержащее только функции sin и cos , называется однородным, если все одночлены относительно тригонометрических функций имеют одинаковую степень, а сами тригонометрические функции имеют равные углы и число одночленов на 1 больше порядка уравнения.

Методы решения тригонометрических уравнений.

Решение тригонометрических уравнений состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

I . Алгебраический метод. Этот метод хорошо известен из алгебры. (Метод замены переменный и подстановки).

Решить уравнения.

1)

Введём обозначение x =2 sin 3 t , получим

Решая это уравнение, получаем:
или

т.е. можно записать

При записи полученного решения из-за наличия знаков степень
записывать не имеет смысла.

Ответ:

Обозначим

Получаем квадратное уравнение
. Его корнями являются числа
и
. Поэтому данное уравнение сводится к простейшим тригонометрическим уравнениям
и
. Решая их, находим, что
или
.

Ответ:
;
.

Обозначим

не удовлетворяет условию

Значит

Ответ:

Преобразуем левую часть уравнения:

Таким образом, данное исходное уравнение можно записать в виде:

, т.е.

Обозначив
, получим
Решив данное квадратное уравнение имеем:

не удовлетворяет условию

Записываем решение исходного уравнения:

Ответ:

Подстановка
сводит данное уравнение к квадратному уравнению
. Его корнями являются числа
и
. Так как
, то заданное уравнение корней не имеет.

Ответ: корней нет.

II . Решение уравнений с помощью условия равенства одноимённых тригонометрических функций.

а)
, если

б)
, если

в)
, если

Используя данные условия, рассмотрим решение следующих уравнений:

6)

Пользуясь сказанным в п. а) получаем, что уравнение имеет решение в том и только в том случае, когда
.

Решая это уравнение, находим
.

Имеем две группы решений:

.

7) Решить уравнение:
.

Пользуясь условием п. б) выводим, что
.

Решая эти квадратные уравнения, получаем:

.

8) Решить уравнение
.

Из данного уравнения выводим, что . Решая это квадратное уравнение, находим, что

.

III . Разложение на множители.

Этот метод рассматриваем на примерах.

9) Решить уравнение
.

Решение. Перенесём все члены уравнения влево: .

Преобразуем и разложим на множители выражение в левой части уравнения:
.

.

.

1)
2)

Т.к.
и
не принимают значение нуль

одновременно, то разделим обе части

уравнения на
,

Ответ:

10) Решить уравнение:

Решение.

или


Ответ:

11) Решить уравнение

Решение:

1)
2)
3)

,


Ответ:

IV . Приведение к однородному уравнению.

Чтобы решить однородное уравнение надо:

Перенести все его члены в левую часть;

Вынести все общие множители за скобки;

Приравнять все множители и скобки к нулю;

Скобки, приравненные к нулю, дают однородное уравнение меньшей степени, которое следует разделить на
(или
) в старшей степени;

Решить полученное алгебраическое уравнение относительно
.

Рассмотрим примеры:

12) Решить уравнение:

Решение.

Разделим обе части уравнения на
,

Вводя обозначения
, именем

корни этого уравнения:

отсюда 1)
2)

Ответ:

13) Решить уравнение:

Решение. Используя формулы двойного угла и основное тригонометрическое тождество, приводим данное уравнение к половинному аргументу:

После приведения подобных слагаемых имеем:

Разделив однородное последнее уравнение на
, получим

Обозначу
, получим квадратное уравнение
, корнями которого являются числа

Таким образом

Выражение
обращается в нуль при
, т.е. при
,
.

Полученное нами решение уравнения не включает в себя данные числа.

Ответ:
, .

V . Введение вспомогательного угла.

Рассмотрим уравнение вида

Где a, b, c - коэффициенты, x - неизвестное.

Разделим обе части этого уравнения на

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль каждого из них не превосходит единицы, а сумма их квадратов равна 1.

Тогда можно обозначить их соответственно
(здесь - вспомогательный угол) и наше уравнение принимает вид: .

Тогда

И его решение

Заметим, что введенные обозначения взаимно заменяемы.

14) Решить уравнение:

Решение. Здесь
, поэтому делим обе части уравнения на

Ответ:

15) Решить уравнение

Решение. Так как
, то данное уравнение равносильно уравнению


Так как
, то существует такой угол , что
,
(т.е.
).

Имеем

Так как
, то окончательно получаем:


.

Заметим, что уравнение вида имеют решение тогда и только тогда, когда

16) Решить уравнение:

Для решения данного уравнения сгруппируем тригонометрические функции с одинаковыми аргументами

Разделим обе части уравнения на два

Преобразуем сумму тригонометрических функций в произведение:

Ответ:

VI . Преобразование произведения в сумму.

Здесь используются соответствующие формулы.

17) Решить уравнение:

Решение. Преобразуем левую часть в сумму:

VII. Универсальная подстановка.

,

эти формулы верны для всех

Подстановка
называется универсальной.

18) Решить уравнение:

Решение: Заменим и
на их выражение через
и обозначим
.

Получаем рациональное уравнение
, которое преобразуется в квадратное
.

Корнями этого уравнения являются числа
.

Поэтому задача свелась к решению двух уравнений
.

Находим, что
.

Значение вида
исходному уравнению не удовлетворяет, что проверяется проверкой - подстановкой данного значения t в исходное уравнение.

Ответ:
.

Замечание. Уравнение 18 можно было решить иным способом.

Разделим обе части этого уравнения на 5 (т.е. на
):
.

Так как
, то существует такое число
, что
и
. Поэтому уравнение принимает вид:
или
. Отсюда находим, что
где
.

19) Решить уравнение
.

Решение. Так как функции
и
имеют наибольшее значение, равное 1, то их сумма равна 2, если
и
, одновременно, то есть
.

Ответ:
.

При решении этого уравнения применялась ограниченность функций и .

Заключение.

Работая над темой « Решения тригонометрических уравнений » каждому учителю полезно выполнять следующие рекомендации:

    Систематизировать методы решения тригонометрических уравнений.

    Выбрать для себя шаги по выполнению анализа уравнения и признаки целесообразности использования того или иного метод решения.

    Продумать способы самоконтроля своей деятельности по реализации метода.

    Научиться составлять « свои » уравнения на каждый из изучаемых методов.

Приложение №1

Решите однородные или приводящиеся к однородным уравнения.

1.

Отв.

Отв.

Отв.

5.

Отв.

Отв.

7.

Отв.

Отв.

В данном практическом уроке будут рассмотрены несколько типовых примеров, которые демонстрируют методы решения тригонометрических уравнений и их систем.

Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Практика

Конспект урока

Основную часть урока мы посвятим решению тригонометрических уравнений и систем, но начнем с заданий на свойства тригонометрических функций, которые с решением уравнений не связаны. Рассмотрим вычисление периода тригонометрических функций со сложным аргументом.

Задача №1 . Вычислить период функций а) ; б) .

Воспользуемся указанными в лекции формулами.

а) Для функции период . В нашем случае , т.е. .

б) Для функции период . У нас , т.к. аргумент можно представить не только разделенным на три, но и умноженным на . Остальные действия с функцией (умножение на , добавление 1) не влияет на аргумент, поэтому нас не интересуют.

Получаем, что

Ответ. а) ; б) .

Переходим к основной части нашей практики и начинаем решение тригонометрических уравнений. Для удобства разберем решение тех же примеров, которые мы упоминали в лекции, когда перечисляли основные виды уравнений.

Задача №2 . Решить уравнение: а) ; б) ; в) ; г) .

Для нахождения корней таких уравнений пользуемся формулами общих решений.

Для вычисления значений аркфункции пользуемся нечетностью арктангенса и таблицей значений тригонометрических функций, что мы подробно рассматривали на предыдущем уроке. Далее не будем отдельно останавливаться на этих действиях.

г) При решении уравнения хочется написать по общей формуле, что , но этого делать нельзя. Здесь принципиально важна проверка области значений косинуса, которая проверяется вначале решения уравнения.

Поскольку , что не лежит в области значений функции, следовательно, уравнение не имеет решений.

Важно не перепутать значение с табличным значением косинуса , будьте внимательны!

Замечание . Достаточно часто в задачах на решение тригонометрических уравнений и систем требуется указать не общее решение, демонстрирующее бесконечное семейство корней, а выбрать только несколько из них, которые лежат в определенном диапазоне значений. Давайте проделаем эти действия на примере ответа к пункту «в».

Дополнительная задача к пункту «в» . Указать количество корней уравнения , которые принадлежат промежутку и перечислить их.

Общее решение нам уже известно:

Для того чтобы указать корни, принадлежащие указанному промежутку, их необходимо по очереди выписать, подставляя конкретные значения параметра. Подставлять будем целые числа, начиная с , т.к. корни нас интересуют из диапазона, который близок к нулю.

При подстановке мы получим еще большее значение корня, поэтому нет смысла этого делать. Теперь подставим отрицательные значения:

Подставлять по тем же соображениям не имеет смысла. Следовательно, мы нашли единственный корень уравнения, который принадлежит указанному диапазону.

Ответ. ; указанному диапазону принадлежит одно значение корня уравнения.

Аналогичная постановка вопроса о поиске определенных значений корней уравнений может встречаться и в заданиях других типов, далее мы не будем тратить на это время. Поиск необходимых корней всегда будет выполняться аналогично. Иногда для этого изображают тригонометрическую окружность. Попробуйте сами нанести на окружность корни уравнений из пунктов «а» и «б», которые попадают в диапазон .

Задача №3 . Решить уравнение .

Воспользуемся методом нахождения корней с использованием тригонометрической окружности, как это было показано на лекции.

Наносим на окружность точки, соответствующие углам, при которых . Такой угол один.

Первое значение угла, соответствующего указанной точке - точка находится на луче, который является началом отсчета. Далее, чтобы попасть еще раз в эту же точку, но уже при другом значении угла, необходимо к первому найденному корню прибавить и получим следующий корень . Для получения следующего корня необходимо проделать ту же операцию и т.д.

Таким образом, можем указать общее решение, которое будет демонстрировать, что для получения всех корней уравнения к первому значению необходимо любое целое количество раз добавлять :

Напомним, что аналогичным способом решаются уравнения вида:

Задача №4 . Решить уравнение .

Наличие сложного аргумента не меняет того, что уравнение, по сути, является простейшим, и подход к решению сохраняется. Просто теперь в роли аргумента выступает . Его и пишем в формуле общего решения:

Задача №5 . Решить уравнение .

Самое главное, это не допустить типичную ошибку и не сократить обе стороны уравнения на , т.к. при этом мы потеряем корни уравнения, соответствующие . Грамотный подход к решению предполагает перенос всех выражений в одну сторону и вынесение общего множителя.

На этом этапе необходимо вспомнить, что если произведение равно нулю, то это возможно в том случае, если либо один из множителей равен нулю, либо другой. Таким образом, наше уравнение превращается в совокупность уравнений:

Первое уравнение решаем, как частный случай простейшего уравнения. Проделайте это самостоятельно, мы выпишем готовый результат. Во втором уравнении выполним действия, чтобы привести его к простейшему виду со сложным аргументом и решим по общей формуле корней.

Обратите внимание на такой нюанс - при записи общей формулы корней второго уравнения мы используем другой параметр «». Это связано с тем, что мы решаем совокупность независимых уравнений и в них не должно быть общих параметров. В результате получаем два независимых семейства решений.

Ответ. ; .

Задача №6 . Решить уравнение .

Для упрощения воспользуемся формулой преобразования произведения тригонометрических функций в сумму

Воспользуемся четностью косинуса и взаимоуничтожим одинаковое слагаемое в двух частях уравнения.

Перенесем все в одну сторону и воспользуемся формулой разности косинусов, чтобы получить произведение функций, которое будет равно нулю. Применим для этого формулу .

Cократим обе стороны уравнения на :

Мы свели уравнение к форме произведения, которая у нас получилась в предыдущем примере. Предлагаем вам самим дорешать его до конца. Укажем окончательный ответ.

В принципе, это уже окончательный ответ. Однако его можно записать компактнее в виде одного семейства решений, а не двух. В первом решении указаны все четверти частей , а во втором все половины частей , но половины входят в четверти, поскольку половина - это две четверти. Таким образом, второе семейство корней входит в первое, и итоговый ответ можно описать первым семейством решений.

Чтобы лучше разобраться в этих рассуждениях, попробуйте нанести полученные корни на тригонометрическую окружность.

Ответ. или .

Мы рассмотрели одно уравнение с использованием преобразований тригонометрических функций, однако их огромное множество, как и типов преобразований. Уравнение на использование универсальной тригонометрической подстановки, пример которой мы не приводили на позапрошлом уроке, мы рассмотрим после того, как разберем метод замены.

Задача №7 . Решить уравнение .

В данном случае необходимо сначала попробовать свести уравнение к использованию одной тригонометрической функции. Т.к. легко выражается через с использованием тригонометрической единицы, мы легко сведем уравнение к синусам.

Подставим выражение в наше уравнение:

Поскольку все сведено к одной функции можем выполнить замену: .

Получили квадратное уравнение, которое легко решить любыми удобными для вас способами, например, с использованием теоремы Виета легко получить, что:

Первое уравнение не имеет решений, т.к. значение синуса выходит за допустимую область .

Второе уравнение предлагаем вам решить самостоятельно, т.к. это уже рассмотренный нами тип частных случаев простейших уравнений. Выпишем его корни:

Ответ..

Задача №8 . Решить уравнение .

В указанном уравнении сразу не видны способы решения, которые мы уже рассмотрели. В таких случаях надо попробовать применить формулы универсальной тригонометрической подстановки, которые помогут привести уравнение к одной функции.

Воспользуемся формулами: и , которые приведут все уравнение к .

Сейчас видно, что можно выполнить замену .

Сложим дроби и умножим обе части уравнения на знаменатель, т.к. он , не равен нулю.

Мы привели уравнение к уже рассмотренной ранее форме, т.е. к произведению множителей, которое равно нулю.

Выполним обратную подстановку:

Оба полученных семейства решений можно легко объединить в одно:

Ответ..

Задача №9 . Решите уравнение . В ответ укажите только корни, кратные .

Указанное уравнение усложняется после приведения к синусам или косинусам, как это хочется сделать с помощью формулы тригонометрической единицы. Поэтому используется другой способ.

Указанное уравнение мы назвали однородным, так называют уравнения, в которых после перестановки местами неизвестных функций или переменных ничего не изменится. Переставьте местами синус с косинусом, и вы убедитесь, что это наш случай.

Решают однородные уравнения делением обеих частей на старшую степень функции. В нашем случае это или или . Выбираем ту, которая нам больше нравится, и делим на нее обе стороны уравнения. Возьмем, например, для этого . При этом обязательно необходимо проверить, не потеряем ли мы при таком делении корни, соответствующие , т.е. . Для этого сначала подставим в исходное уравнение.

Поскольку мы получили не тождество, то не будут соответствовать корни нашего уравнения.

Теперь можем смело делить на :

Мы свели уравнение к замене, а такой метод решения уже был рассмотрен. Как говорится «выливаем воду из чайника» и сводим задачу к уже известной. Дорешайте далее сами. Мы укажем окончательный ответ:

Поскольку в условии задачи от нас требуют указать только корни кратные , то в ответ запишем только первое семейство решений.

Задача №10 . Решить уравнение .

Указанное уравнение удивляет тем, что в нем две неизвестные, а как мы знаем, решить в общем случае такое уравнение нельзя. Другая проблема заключается в том, что это уравнение принципиально отличается от всех рассмотренных ранее, т.к. неизвестная в нем находится не только в аргументе тригонометрической функции.

Чтобы его решить, обратим внимание на свойства функций, которые приравниваются слева и справа. Конкретно нас интересует, какими значениями ограничены эти функции.

Для косинуса нам известна область значений:

Для квадратичной функции:

Из этого можно сделать вывод, что эти выражения могут иметь только одно общее значение, когда каждое из них равно 1. Получаем систему уравнений:

Оба уравнения получаются независимыми и содержат по одной переменной, поэтому легко решаются уже известными нам методами.

Конечно же указанный способ неочевиден, а задача относится к заданиям повышенной сложности. Данный метод иногда называют «мини-макс», т.к. используется равенство минимального и максимального значения функций.

Теперь рассмотрим отдельно методы решения систем тригонометрических уравнений. Методы их решений стандартны, просто мы еще будем пользоваться формулами преобразований тригонометрических функций. Разберем самые часто встречающиеся типы таких систем.

Задача №11 . Решить систему уравнений .

Решаем методом подстановки, выражаем из более простого линейного уравнения, например, и подставляем его во второе уравнение:

Во втором уравнении пользуемся тем, что является периодом синуса, т.е. его можно убрать, и синус нечетная функция, т.е. из нее выносится минус.

По формуле сложения гармонических колебаний приводим к одной тригонометрической функции второе уравнение. Попробуйте выполнить эти преобразования самостоятельно.

Подставим полученное решение в выражение для :

В данном случае мы используем один и тот же параметр для обоих семейств решений, т.к. они зависимы друг от друга.

Системы из простейших тригонометрических уравнений.

Задача №12 . Решить систему уравнений .

Оба уравнения в системе являются частными случаями простейших уравнений, мы умеем их решать, и система быстро сводится к линейной.

Параметры в обоих уравнениях различны, т.к. мы решили уравнения независимо друг от друга и переменные еще не выражались одна через другую.

Теперь решаем линейную систему методом подстановки или сложения, как вам больше нравится, проделайте эти действия самостоятельно. Укажем конечный результат.

Обратите внимание на запись решения системы, когда переменные зависят одновременно от двух параметров. Для того чтобы выписать численные значения корней в таком случае подставляются по очереди все целые значения параметров , которые не зависят друг от друга.

В этой практической части урока мы с вами рассмотрели несколько типовых примеров, в которых продемонстрировали методы решения тригонометрических уравнений и их систем.

Здравствуйте, Дорогие друзья! Сегодня мы рассмотрим задание из части С. Это система из двух уравнений. Уравнения довольно своеобразны. Здесь и синус, и косинус, да ещё и корни имеются. Необходимо умение решать квадратные и , простейшие . В представленном задании их подробные решения не представлены, это вы уже должны уметь делать. По указанным ссылкам можете посмотреть соответствующую теорию и практические задания.

Основная трудность в подобных примерах заключается в том, что необходимо полученные решения сопоставлять с найденной областью определения, здесь легко можно допустить ошибку из-за невнимательности.

Решением системы всегда является пара(ры) чисел х и у, записывается как (х;у). Обязательно после того как получили ответ делайте проверку. Для вас представлено три способа, нет, не способа, а три пути рассуждения, которыми можно пойти. Лично мне наиболее близок третий. Приступим:

Решите систему уравнений:

ПЕРВЫЙ ПУТЬ!

Найдём область определения уравнения. Известно, что подкоренное выражение имеет неотрицательное значение:

Рассмотрим первое уравнение:

1. Оно равно нулю при х = 2 или при х = 4, но 4 радиана не принадлежит определения выражения (3).

*Угол в 4 радиана (229,188 0) лежит в третьей четверти, в ней значение синуса отрицательно. Поэтому

остаётся только корень х = 2.

Рассмотрим второе уравнении при х = 2.

При этом значении х выражение 2 – y – у 2 должно быть равно нулю, так как

Решим 2 – y – у 2 = 0, получим y = – 2 или y = 1.

Отметим, что при y = – 2 корень из cos y не имеет решения.

*Угол в –2 радиана (– 114,549 0) лежит в третьей четверти, а в ней значение косинуса отрицательно.

Поэтому остаётся только y = 1.

Таким образом, решением системы будет пара (2;1).

2. Первое уравнение так же равно нулю при cos y = 0, то есть при

Но учитывая найденную область определения (2), получим:

Рассмотрим второе уравнение при этом у.

Выражение 2 – y – у 2 при у = – Пи/2 не равно нулю, значит для того, чтобы оно имело решение должно выполнятся условие:

Решаем:

Учитывая найденную область определения (1) получаем, что

Таким образом, решением системы является ещё одна пара:

ВТОРОЙ ПУТЬ!

Найдём область определения для выражения:

Известно, что выражение под корнем имеет неотрицательное значение.
Решая неравенство 6х – х 2 + 8 ≥ 0, получим 2 ≤ х ≤ 4 (2 и 4 это радианы).

Рассмотрим Случай 1:

Пусть х = 2 или х = 4.

Если х = 4, то sin x < 0. Если х = 2, то sin x > 0.

Учитывая то, что sin x ≠ 0, получается, что в этом случае во втором уравнении системы 2 – y – у 2 = 0.

Решая уравнение получим, что y = – 2 или y = 1.

Анализируя полученные значения можем сказать, что х = 4 и y = – 2 не является корнями, так как получим sin x < 0 и cos y < 0 соответственно, а выражение стоящее под корнем должно быть ≥ 0 (то есть числом неотрицательным).

Видно, что х = 2 и y = 1 входят область определения.

Таким образом, решением является пара (2;1).

Рассмотрим Случай 2:

Пусть теперь 2 < х < 4, тогда 6х – х 2 + 8 > 0. Исходя из этого можем сделать вывод, что в первом уравнении cos y должен быть равен нулю.

Решаем уравнение, получим:

Во втором уравнении при нахождении области определения выражения:

Получим:

2 – y – у 2 ≥ 0

– 2 ≤ у ≤ 1

Из всех решений уравнения cos y = 0 этому условию удовлетворяет только:

При данном значении у, выражение 2 – y – у 2 ≠ 0. Следовательно, во втором уравнении sin x будет равен нулю, получим:

Из всех решений этого уравнения интервалу 2 < х < 4 принадлежит только

Значит решением системы будет ущё пара:

*Область определения сразу для всех выражений в системе находить не стали, рассмотрели выражение из первого уравнения (2 случая) и далее уже по ходу определяли соответствие найденных решений с установленной областью определения. На мой взгляд не очень удобно, как-то путано получается.

ТРЕТИЙ ПУТЬ!

Он схож с первым, но есть отличия. Также сначала находится область определения для выражений. Затем отдельно решается первое и второе уравнение, далее находится решение системы.

Найдём область определения. Известно, что подкоренное выражение имеет неотрицательное значение:

Решая неравенство 6х – х 2 + 8 ≥ 0 получим 2 ≤ х ≤ 4 (1).

Величины 2 и 4 это радианы, 1 радиан как мы знаем ≈ 57,297 0

В градусах приближённо можем записать 114,549 0 ≤ х ≤ 229,188 0 .

Решая неравенство 2 – y – у 2 ≥ 0 получим – 2 ≤ у ≤ 1 (2).

В градусах можем записать – 114,549 0 ≤ у ≤ 57,297 0 .

Решая неравенство sin x ≥ 0 получим, что

Решая неравенство cos y ≥ 0 получим, что

Известно, что произведение равно нулю тогда, когда один из множителей равен нулю (и другие при этом не теряют смысла).

Рассмотрим первое уравнение:

Значит

Решением cos y = 0 является:

Решением 6х – х 2 + 8 = 0 являются х = 2 и х = 4.

Рассмотрим второе уравнение:

Значит

Решением sin x = 0 является:

Решением уравнения 2 – y – у 2 = 0 будут y = – 2 или y = 1.

Теперь учитывая область определения проанализируем

полученные значения:

Так как 114,549 0 ≤ х ≤ 229,188 0 , то данному отрезку принадлежит только одно решение уравнения sin x = 0, это x = Пи.

Так как – 114,549 0 ≤ у ≤ 57,297 0 , то данному отрезку принадлежит только одно решение уравнения cos y = 0, это

Рассмотрим корни х = 2 и х = 4.

Верно!

Таким образом, решением системы будут две пары чисел:

*Здесь учитывая найденную область определения мы исключили все полученные значения, не принадлежащие ей и далее перебрали все варианты возможных пар. Далее проверили, какие из них являются решением системы.

Рекомендую сразу в самом начале решения уравнений, неравенств, их систем, если имеются корни, логарифмы, тригонометрические функции, обязательно находить область определения. Есть, конечно, такие примеры, где проще бывает сразу решить, а потом просто проверить решение, но таких относительное меньшинство.

Вот и всё. Успеха Вам!

Уроки 54-55. Системы тригонометрических уравнений (факультативное занятие)

09.07.2015 9315 915

Цель: рассмотреть наиболее типичные системы тригонометрических уравнений и способы их решения.

I. Сообщение темы и цели уроков

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (самостоятельная работа).

Вариант 1

Решите неравенство:

Вариант 2

Решите неравенство:

III. Изучение нового материала

На экзаменах системы тригонометрических уравнений встречаются гораздо реже тригонометрических уравнений и неравенств. Четкой классификации систем тригонометрических уравнений не существует. Поэтому условно разобьем их на группы и рассмотрим способы решения этих задач.

1. Простейшие системы уравнений

К ним отнесем системы, в которых или одно из уравнений является линейным, или уравнения системы могут быть решены независимо друг от друга.

Пример 1

Решим систему уравнений

Так как первое уравнение является линейным, то выразим из него переменную и подставим во второе уравнение: Используем формулу приведения и основное тригонометрическое тождество. Получим уравнение или Введем новую переменную t = sin у. Имеем квадратное уравнение 3 t 2 - 7 t + 2 = 0, корни которого t 1 = 1/3 и t 2 = 2 (не подходит, так как sin у ≤ 1). Вернемся к старой неизвестной и получим уравнение sin y = 1/3, решение которого Теперь легко найти неизвестную: Итак, система уравнений имеет решения где n ∈ Z .

Пример 2

Решим систему уравнений

Уравнения системы независимы. Поэтому можно записать решения каждого уравнения. Получим: Почленно сложим и вычтем уравнения этой системы линейных уравнений и найдем: откуда

Обратим внимание на то, что в силу независимости уравнений при нахождении х - у и х + у должны быть указаны разные целые числа n и k . Если бы вместо k было также поставлено n , то решения имели бы вид: При этом было бы потеряно бесконечное множество решений и, кроме того, возникла бы связь между переменными x и у: х = 3у (чего нет на самом деле). Например, легко проверить, что данная система имеет решение х = 5π и у = п (в соответствии с полученными формулами), которое при k = n найти невозможно. Поэтому будьте внимательнее.

2. Системы вида

Такие системы приводятся к простейшим при сложении и вычитании уравнений. При этом получим системы или Отметим очевидное ограничение: и Само же решение подобных систем сложностей не представляет.

Пример 3

Решим систему уравнений

Преобразуем сначала второе уравнение системы, используя равенство Получим: Подставим в числитель этой дроби первое уравнение: и выразим Теперь имеем систему уравнений Сложим и вычтем эти уравнения. Имеем: или Запишем решения этой простейшей системы: Складывая и вычитая эти линейные уравнения, находим:

3. Системы вида

Такие системы можно рассматривать как простейшие и решать их соответствующим образом. Однако есть и другой способ решения: преобразовать сумму тригонометрических функций в произведение и использовать оставшееся уравнение.

Пример 4

Решим систему уравнений

Сначала преобразуем первое уравнение, используя формулу для суммы синусов углов. Получим: Используя второе уравнение, имеем: откуда Выпишем решения этого уравнения: С учетом второго уравнения данной системы получаем систему линейных уравнений Из этой системы находим Такие решения удобно записать в более рациональном виде. Для верхних знаков имеем: для нижних знаков -

4. Системы вида

Прежде всего необходимо получить уравнение, содержащее только одну неизвестную. Для этого, например, выразим из одного уравнения sin у, из другого - cos у. Возведем в квадрат эти соотношения и сложим. Тогда получается тригонометрическое уравнение, содержащее неизвестную х. Решаем такое уравнение. Затем, используя любое уравнение данной системы, получаем уравнение для нахождения неизвестной у.

Пример 5

Решим систему уравнений

Запишем систему в виде Возведем в квадрат каждое уравнение системы и получим: Сложим уравнения этой системы: или Используя основное тригонометрическое тождество, запишем уравнение в виде или Решения этого уравнения cos x = 1/2 (тогда ) и cos x = 1/4 (откуда ), где n , k ∈ Z . Учитывая связь между неизвестными cos y = 1 – 3 cos x , получим: для cos x = 1/2 cos y = -1/2; для cos x = 1/4 cos y = 1/4. Необходимо помнить, что при решении системы уравнений проводилось возведение в квадрат и эта операция могла привести к появлению посторонних корней. Поэтому надо учесть первое уравнение данной системы, из которого следует, что величины sin x и sin у должны быть одного знака.

С учетом этого получим решения данной системы уравнений и где n , m , k , l ∈ Z . При этом для неизвестных х и у одновременно выбирают или верхние, или нижние знаки.

В частном случае система может быть решена преобразованием суммы (или разности) тригонометрических функций в произведение и последующим почленным делением уравнений друг на друга.

Пример 6

Решим систему уравнений

В каждом уравнении преобразуем сумму и разность функций в произведение и разделим каждое уравнение на 2. Получим: Так как ни один множитель в левых частях уравнений не равен нулю, то почленно разделим уравнения друг на друга (например, второе на первое). Получим: откуда Подставим найденное значение например, в первое уравнение: Учтем, что Тогда откуда

Получили систему линейных уравнений Складывая и вычитая уравнения этой системы, найдем и где n , k ∈ Z .

5. Системы, решаемые с помощью замены неизвестных

Если система содержит только две тригонометрические функции или приводится к такому виду, то удобно использовать замену неизвестных.

Пример 7

Решим систему уравнений

Так как в данную систему входят только две тригонометрические функции, то введем новые переменные а = tg х и b = sin у. Получим систему алгебраических уравнений Из первого уравнения выразим а = b + 3 и подставим во второе: или Корни этого квадратного уравнения b 1 = 1 и b 2 = -4. Соответствующие значения а1 = 4 и а2 = -1. Вернемся к старым неизвестным. Получим две системы простейших тригонометрических уравнений:

а) ее решение где n , k ∈ Z .

б) решений не имеет, так как sin у ≥ -1.

Пример 8

Решим систему уравнений

Преобразуем второе уравнение системы так, чтобы оно содержало только функции sin х и cos у. Для этого используем формулы понижения степени. Получим: (откуда ) и (тогда ). Второе уравнение системы имеет вид: или Получили систему тригонометрических уравнений Введем новые переменные a = sin х и b = cos у. Имеем симметричную систему уравнений единственное решение которой a = b = 1/2. Вернемся к старым неизвестным и получим простейшую систему тригонометрических уравнений решение которой где n , k ∈ Z .

6. Системы, для которых важны особенности уравнений

Практически при решении любой системы уравнений используются те или иные ее особенности. В частности, один из наиболее общих приемов решения системы - тождественные преобразования, позволяющие получить уравнение, содержащее только одну неизвестную. Выбор преобразований, конечно, определяется спецификой уравнений системы.

Пример 9

Решим систему

Обратим внимание на левые части уравнений, например на Используя формулы приведения, сделаем из нее функцию с аргументом π/4 + х. Получим: Тогда система уравнений имеет вид: Чтобы исключить переменную х, почленно умножим уравнения и получим: или 1 = sin 3 2у, откуда sin 2у = 1. Находим и Удобно отдельно рассмотреть случаи четных и нечетных значений n . Для четных n (n = 2 k , где k ∈ Z ) Тогда из первого уравнения данной системы получим: где m ∈ Z . Для нечетных Тогда из первого уравнения имеем: Итак, данная система имеет решения

Как и в случае уравнений, достаточно часто встречаются системы уравнений, в которых существенную роль играет ограниченность функций синуса и косинуса.

Пример 10

Решим систему уравнений

Прежде всего преобразуем первое уравнение системы: или или или или Учитывая ограниченность функции синуса, видим, что левая часть уравнения не меньше 2, а правая часть не больше 2. Поэтому такое уравнение равносильно условиям sin 2 2х = 1 и sin 2 у = 1.

Второе уравнение системы запишем в виде sin 2 у = 1 - cos 2 z или sin 2 у = sin 2 z , и тогда sin 2 z = 1. Получили систему простейших тригонометрических уравнений Используя формулу понижения степени, запишем систему в виде или тогда

Разумеется, при решении других систем тригонометрических уравнений также необходимо обращать внимание на особенности этих уравнений.

Скачать материал

Полный текст материала смотрите в скачиваемом файле.
На странице приведен только фрагмент материала.