Соли реагируют с. Основные соли разлагаются температурой

Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

Кислые соли

Задания на применение знаний о кислых солях встречаются в вариантах работ ЕГЭ
на разных уровнях сложности (А, В и С). Поэтому при подготовке учащихся к сдаче ЕГЭ
нужно рассмотреть следующие вопросы.

1. Определение и номенклатура.

Кислые соли – это продукты неполного замещения атомов водорода многоосновных кислот на металл. Номенклатура кислых солей отличается от средних только добавлением приставки «гидро…» или «дигидро…» к названию соли, например: NaHCO 3 – гидрокарбонат натрия, Са(Н 2 РО 4) 2 – дигидрофосфат кальция.

2. Получение.

Кислые соли получаются при взаимодействии кислот с металлами, оксидами металлов, гидроксидами металлов, солями, аммиаком, если кислота в избытке.

Например:

Zn + 2H 2 SO 4 = H 2 + Zn(HSO 4) 2 ,

CaO + H 3 PO 4 = CaHPO 4 + H 2 O,

NaOH + H 2 SO 4 = H 2 O + NaHSO 4 ,

Na 2 S + HCl = NaHS + NaCl,

NH 3 + H 3 PO 4 = NH 4 H 2 PO 4 ,

2NH 3 + H 3 PO 4 = (NH 4) 2 HPO 4 .

Также кислые соли получаются при взаимодействии кислотных оксидов со щелочами, если оксид в избытке. Например:

CO 2 + NaOH = NaHCO 3 ,

2SO 2 + Ca(OH) 2 = Ca(HSO 3) 2 .

3. Взаимопревращения.

Средняя соль кислая соль; например:

K 2 СО 3 KНСО 3 .

Чтобы из средней соли получить кислую, нужно добавить избыток кислоты или соответствующего оксида и воды:

K 2 СО 3 + Н 2 О + СО 2 = 2KНСО 3 .

Чтобы из кислой соли получить среднюю, нужно добавить избыток щелочи:

KНСО 3 + KОН = K 2 СО 3 + Н 2 О.

Гидрокарбонаты разлагаются с образованием карбонатов при кипячении:

2KНСО 3 K 2 СО 3 + Н 2 О + СО 2 .

4. Свойства.

Кислые соли проявляют свойства кислот, взаимодействуют с металлами, оксидами металлов, гидроксидами металлов, солями.

Например:

2KНSO 4 + Mg = H 2 + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + MgO = H 2 O + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + 2NaOH = 2H 2 O + K 2 SO 4 + Na 2 SO 4 ,

2KHSO 4 + Cu(OH) 2 = 2H 2 O + K 2 SO 4 + CuSO 4 ,

2KHSO 4 + MgCO 3 = H 2 O + CO 2 + K 2 SO 4 + MgSO 4 ,

2KHSO 4 + BaCl 2 = BaSO 4 + K 2 SO 4 + 2HCl.

5. Задачи на кислые соли. Образование одной соли.

При решении задач на избыток и недостаток нужно помнить о возможности образования кислых солей, поэтому сначала составляют уравнения всех возможных реакций. После нахождения количеств реагирующих веществ делают вывод о том, какая соль получится, и решают задачу по соответствующему уравнению.

З а д а ч а 1. Через раствор, содержащий 60 г NaOH, пропустили 44,8 л СО 2 . Найти массу образовавшейся соли.

Р е ш е н и е

(NaOH) = m /M = 60 (г)/40 (г/моль) = 1,5 моль;

(СО 2) = V /V m = 44,8 (л)/22,4 (л/моль) = 2 моль.

Поскольку (NaOH) : (CO 2) = 1,5: 2 = 0,75: 1, то делаем вывод, что СО 2 в избытке, следовательно, получится кислая соль:

NaOH + CO 2 = NaHCO 3 .

Количество вещества образовавшейся соли равно количеству вещества прореагировавшего гидроксида натрия:

(NaHCO 3) = 1,5 моль.

m (NaHCO 3) = M = 84 (г/моль) 1,5 (моль) = 126 г.

Ответ: m (NaHCO 3) = 126 г.

З а д а ч а 2. Оксид фосфора(V) массой 2,84 г растворили в 120 г 9%-й ортофосфорной кислоты. Полученный раствор прокипятили, затем к нему добавили 6 г гидроксида натрия. Найти массу полученной соли.

Дано: Найти: m (соли).
m (P 2 O 5) = 2,84 г,
m(р-ра)(H 3 PO 4) = 120 г,
(H 3 PO 4) = 9 %,
m (NaOH) = 6 г.

Р е ш е н и е

(P 2 O 5) = m /M = 2,84 (г)/142 (г/моль) = 0,02 моль,

следовательно, 1 (H 3 PO 4 получ.) = 0,04 моль.

m (H 3 PO 4) = m (р-ра) = 120 (г) 0,09 = 10,8 г.

2 (H 3 PO 4) = m /M = 10,8 (г)/98 (г/моль) = 0,11 моль,

(H 3 PO 4) = 1 + 2 = 0,11 + 0,04 = 0,15 моль.

(NaOH) = m /M = 6 (г)/40 (г/моль) = 0,15 моль.

Поскольку

(H 3 PO 4) : (NaOH) = 0,15: 0,15 = 1: 1,

то получится дигидрофосфат натрия:

(NaH 2 PO 4) = 0,15 моль,

m (NaH 2 PO 4) = M = 120 (г/моль) 0,15 (моль) = 18 г.

Ответ: m (NaH 2 PO 4) = 18 г.

З а д а ч а 3. Сероводород объемом 8,96 л пропустили через 340 г 2%-го раствора аммиака. Назовите соль, получившуюся в результате реакции, и определите ее массу.

Ответ: гидросульфид аммония,
m (NH 4 HS) = 20,4 г.

З а д а ч а 4. Газ, полученный при сжигании 3,36 л пропана, прореагировал с 400 мл 6%-го раствора гидроксида калия ( = 1,05 г/мл). Найти состав полученного раствора и массовую долю соли в полученном растворе.

Ответ: (KНСО 3) = 10,23 %.

З а д а ч а 5. Весь углекислый газ, полученный при сжигании 9,6 кг угля, пропустили через раствор, содержащий 29,6 кг гидроксида кальция. Найти массу полученной соли.

Ответ: m (Ca(HCO 3) 2) = 64,8 кг.

З а д а ч а 6. В 9,8 кг 20%-го раствора серной кислоты растворили 1,3 кг цинка. Найти массу полученной соли.

Ответ: m (ZnSO 4) = 3,22 кг.

6. Задачи на кислые соли. Образование смеси двух солей.

Это более сложный вариант задач на кислые соли. В зависимости от количества реагирующих веществ возможно образование смеси двух солей.

Например, при нейтрализации оксида фосфора(V) щелочью в зависимости от молярного соотношения реагентов могут образоваться следующие продукты:

P 2 O 5 + 6NaOH = 2Na 3 PO 4 + 3H 2 O,

(P 2 O 5):(NaOH) = 1:6;

P 2 O 5 + 4NaOH = 2Na 2 HPO 4 + H 2 O,

(P 2 O 5):(NaOH) = 1:4;

P 2 O 5 + 2NaOH + H 2 O = 2NaH 2 PO 4 ,

(P 2 O 5):(NaOH) = 1:2.

Следует помнить, что при неполной нейтрализации возможно образование смеси двух соединений. При взаимодействии 0,2 моль Р 2 О 5 с раствором щелочи, содержащим 0,9 моль NaOH, молярное соотношение находится между 1:4 и 1:6. В этом случае образуется смесь двух солей: фосфата натрия и гидрофосфата натрия.

Если раствор щелочи будет содержать 0,6 моль NaOH, то молярное соотношение будет другим: 0,2:0,6 = 1:3, оно находится между 1:2 и 1:4, поэтому получится смесь двух других солей: дигидрофосфата и гидрофосфата натрия.

Эти задачи можно решать разными способами. Мы будем исходить из предположения, что одновременно происходят две реакции.

А л г о р и т м р е ш е н и я

1. Составить уравнения всех возможных реакций.

2. Найти количества реагирующих веществ и по их соотношению определить уравнения двух реакций, которые происходят одновременно.

3. Обозначить количество одного из реагирующих веществ в первом уравнении как х моль, во втором – у моль.

4. Выразить через х и у количества другого реагирующего вещества согласно молярным соотношениям по уравнениям.

5. Составить систему уравнений с двумя неизвестными.

З а д а ч а 1. Оксид фосфора(V), полученный при сжигании 6,2 г фосфора, пропустили через 200 г 8,4%-го раствора гидроксида калия. Какие вещества и в каких количествах получаются?

Дано: Найти: 1 ; 2 .
m (P) = 6,2 г,
m (р-ра KОН) = 200 г,
(KОН) = 8,4 %.

Р е ш е н и е

(P) = m /M = 6,2 (г)/31 (г/моль) = 0,2 моль,

Ответ. ((NH 4) 2 HPO 4) = 43,8 %,
(NH 4 H 2 PO 4) = 12,8 %.

З а д а ч а 4. К 50 г раствора ортофосфорной кислоты с массовой долей 11,76 % прибавили 150 г раствора гидроксида калия с массовой долей 5,6 %. Найти состав остатка, полученного при выпаривании раствора.

Ответ: m (K 3 PO 4) = 6,36 г,
m (K 2 HPO 4) = 5,22 г.

З а д а ч а 5. Сожгли 5,6 л бутана (н.у.) и образовавшийся углекислый газ пропустили через раствор, содержащий 102,6 г гидроксида бария. Найти массы полученных солей.

Ответ: m (BaCO 3) = 39,4 г,
m (Ba(HCO 3) 2) = 103,6 г.

Видеоурок 1: Классификация неорганических солей и их номенклатура

Видеоурок 2: Способы получения неорганических солей. Химические свойства солей

Лекция: Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка)


Характеристика солей

Соли – это такие химические соединения, состоящие из катионов металлов (или аммония) и кислотных остатков.

Соли так же следует рассматривать в виде продукта взаимодействия кислоты и основания. В итоге данного взаимодействия, могут образовываться:

    нормальные (средние),

  • основные соли.

Нормальные соли образуются при достаточном для полного взаимодействия количестве кислоты и основания. К примеру:

    Н 3 РО 4 + 3КОН → К 3 РО 4 + 3Н 2 О.

Названия нормальных солей состоят из двух частей. В начале называется анион (кислотный остаток), затем катион. Например: хлорид натрия - NaCl, сульфат железа(III) - Fe 2 (SО 4) 3 , карбонат калия - K 2 CO 3 , фосфат калия - K 3 PO 4 и др.

Кислые соли образуются при избытке кислоты и недостаточном количестве щелочи, потому как при этом катионов металла становится недостаточно для замещения всех катионов водорода, имеющихся в молекуле кислоты. К примеру:

    Н 3 РО 4 + 2КОН = К 2 НРО 4 + 2Н 2 О;

    Н 3 РО 4 + КОН = КН 2 РО 4 + Н 2 О.

В составе кислотных остатков данного вида солей вы всегда увидите водород. Кислые соли всегда возможны для многоосновных кислот, а для одноосновных нет.

В названиях кислых солей ставится приставка гидро- к аниону. Например: гидросульфат железа(III)- Fe(HSO 4) 3 , гидрокарбонат калия - KHCO 3 , гидрофосфат калия - K 2 HPO 4 и др.

Основные соли образуются при избытке основания и недостаточном количестве кислоты, потому как в данном случае анионов кислотных остатков недостаточно для полного замещения гидроксогрупп, имеющихся в основании. К примеру:

    Cr(OH) 3 + HNO 3 → Cr(OH) 2 NO 3 + H 2 O;

    Cr(OH) 3 + 2HNO 3 → CrOH(NO 3) 2 + 2H 2 O.

Таким образом основные соли в составе катионов содержат гидроксогруппы. Основные соли возможны для многокислотных оснований, а для однокислотных нет. Некоторые основные соли способны самостоятельно разлагаться, при этом выделяя воду, образуя оксосоли, обладающие свойствами основных солей. К примеру:

    Sb(OH) 2 Cl → SbOCl + H 2 O;

    Bi(OH) 2 NO 3 → BiONO 3 + H 2 O.

Название основных солей строится следующим образом: к аниону добавляется приставка гидроксо- . Например: гидроксосульфат железа(III) - FeOHSO 4 , гидроксосульфат алюминия - AlOHSO 4 , дигидроксохлорид железа (III) - Fe(OH) 2 Cl и др.

Многие соли, находясь в твердом агрегатном состоянии, являются кристаллогидратами: CuSO4.5H2O; Na2CO3.10H2O и т.д.

Химические свойства солей


Соли – это достаточно твердые кристаллические вещества, имеющие ионную связь между катионами и анионами. Свойства солей обусловлены их взаимодействием с металлами, кислотами, основаниями и солями.

Типичные реакции нормальных солей


С металлами реагируют хорошо. При этом, более активные металлы вытесняют менее активные из растворов их солей. К примеру:

    Zn + CuSO 4 → ZnSO 4 + Cu;

    Cu + Ag 2 SO 4 → CuSO 4 + 2Ag.

С кислотами, щелочами и другими солями реакции проходят до конца, при условии образования осадка, газа или малодиссоциируемых соединений. Например, в реакциях солей с кислотами образуются такие вещества, как сероводород H 2 S – газ; сульфат бария BaSO 4 – осадок; уксусная кислота CH 3 COOH – слабый электролит, малодиссоциируемое соединение. Вот уравнения данных реакций:

    K 2 S + H 2 SO 4 → K 2 SO 4 + H 2 S;

    BaCl 2 + H 2 SO 4 → BaSO 4 + 2HCl;

    CH 3 COONa + HCl → NaCl + CH 3 COOH.

В реакциях солей со щелочами образуются такие вещества, как гидроксид никеля (II) Ni(OH) 2 – осадок; аммиак NH 3 – газ; вода H 2 О – слабый электролит, малодиссоциируемое соединение:

    NiCl 2 + 2KOH → Ni(OH) 2 + 2KCl;

    NH 4 Cl + NaOH → NH 3 +H 2 O +NaCl.

Соли реагируют между собой, если образуется осадок:

    Ca(NO 3) 2 + Na 2 CO 3 → 2NaNO 3 + CaCO 3 .

Или в случае образования более устойчивого соединения:

    Ag 2 CrO 4 + Na 2 S → Ag 2 S + Na 2 CrO 4 .

В этой реакции из кирпично-красного хромата серебра образуется черный сульфид серебра, ввиду того, что он является более нерастворимым осадком, чем хромат.

Многие нормальные соли разлагаются при нагревании с образованием двух оксидов – кислотного и основного:

    CaCO 3 → СаО + СО 2 .

Нитраты разлагаются другим, отличным от остальных нормальных солей образом. При нагревании нитраты щелочных и щелочноземельных металлов выделяют кислород и превращаются в нитриты:

    2NaNО 3 → 2NaNО 2 + О 2 .

Нитраты почти всех других металлов разлагаются до оксидов:

    2Zn(NO 3) 2 → 2ZnO + 4NO 2 + O 2 .

Нитраты некоторых тяжелых металлов (серебра, ртути и др) разлагаются при нагревании до металлов:

    2AgNO 3 → 2Ag + 2NO 2 + О 2 .

Особое положение занимает нитрат аммония, который до температуры плавления (170 о С) частично разлагается по уравнению:

    NH 4 NO 3 → NH 3 + HNO 3 .

При температурах 170 - 230 о С, по уравнению:

    NH 4 NO 3 → N 2 O + 2H 2 O.

При температурах выше 230 о С - со взрывом, по уравнению:

    2NH 4 NO 3 → 2N 2 + O 2 + 4H 2 O.

Хлорид аммония NH 4 Cl разлагается с образованием аммиака и хлороводорода:

    NH 4 Cl → NH 3 + НCl.

Типичные реакции кислых солей


Они вступают во все те реакции, в которые вступают кислоты. Со щелочами реагируют следующим образом, если в составе кислой соли и щелочи имеется один и тот же металл, то в результате образуется нормальная соль. К примеру:

    NаHCO 3 + OH → Nа 2 CO 3 + H 2 O .

Если же щелочь содержит другой металл, то образуются двойные соли. Пример образования карбоната лития - натрия:

    NаHCO 3 + LiOH Li NаCO 3 + H 2 O .

Типичные реакции основных солей


Данные соли вступают в те же реакции, что и основания. С кислотами реагируют следующим образом, если в составе основной соли и кислоты имеется один и тот же кислотный остаток, то в результате образуется нормальная соль. К примеру:

    Cu(OH )Cl + HCl CuCl 2 + H 2 O .

Если же кислота содержит другой кислотный остаток, то образуются двойные соли. Пример образования хлорида меди - брома:

    Cu(OH )Cl + HBr CuBr Cl + H 2 O .

Комплексные соли

Комплексное соединение - соединение, в узлах кристаллической решетки которого содержатся комплексные ионы.

Рассмотрим комплексные соединения алюминия - тетрагидроксоалюминаты и цинка - тетрагидроксоцинкаты. В квадратных скобках формул данных веществ указываются комплексные ионы.

Химические свойства тетрагидроксоалюмината натрия Na и тетрагидроксоцинката натрия Na 2 :

1. Как и все комплексные соединения выше названные вещества диссоциируются:

  • Na → Na + + - ;
  • Na 2 → 2Na + + - .

Имейте ввиду, что дальнейшая диссоциация комплексных ионов невозможна.

2. В реакциях с избытком сильных кислот образуют две соли. Рассмотрим реакцию тетрагидроксоалюмината натрия с разбавленным раствором хлороводорода:

  • Na + 4HCl AlCl 3 + NaCl + H 2 O .

Мы видим образование двух солей: хлорида алюминия, хлорида натрия и воды. Подобная реакция произойдет и в случае с тетрагидроксоцинкатом натрия.

3. Если же сильной кислоты будет недостаточно, допустим вместо 4 HCl мы взяли 2 HCl, то соль образует наиболее активный металл, в данном случае натрий активнее, значит образуется хлорид натрия, а образовавшиеся гидроксиды алюминия и цинка выпадут в осадок. Этот случай рассмотрим на уравнении реакции с тетрагидроксоцинкатом натрия:

    Na 2 + 2HCl → 2NaCl + Zn (OH) 2 ↓ +2H 2 O .

Которые состоят из аниона (кислотного остатка) и катиона (атом металла). В большинстве случаев это кристаллические вещества различной окраски и с разной растворимостью в воде. Простейший представитель данного класса соединений - (NaCl).

Соли делятся на кислые, нормальные и основные.

Нормальные (средние) образуются в случаях, когда в кислоте все атомы водорода замещаются на атомы металла или когда все гидроксильные группы основы замещаются на кислотные остатки кислот (например, MgSO4, Mg (CH3COO) 2). При электролитической диссоциации они разлагаются на положительно заряженные анионы металлов и отрицательно заряженные кислотные остатки.

Химические свойства солей данной группы:

Разлагаются при воздействии высоких температур;

Подвергаются гидролизу (взаимодействие с водой);

Вступают в реакции обмена с кислотами, другими солями и основаниями. При этом следует помнить некоторые особенности данных реакций:

Реакция с кислотой проходит лишь тогда, когда эта чем та, от которой происходит соль;

Реакция с основанием проходит в случае, когда образуется нерастворимое вещество;

Солевой раствор реагирует с металлом, если он стоит в электрохимическом ряду напряжений левее металла, который входит в состав соли;

Солевые соединения в растворах взаимодействуют друг с другом, если при этом образуется нерастворимый продукт обмена;

Редокс, что можно связать со свойствами катиона или аниона.

Кислые соли получают в случаях, когда лишь часть атомов водорода в кислоте замещается на атомы металлов (например, NaHSO4, CaHPO4). При электролитической диссоциации они образуют катионы водорода и металла, анионы кислотного остатка, поэтому химические свойства солей данной группы включают следующие признаки как солевых, так и кислотных соединений:

Подвергаются термическому разложению с образованием средней соли;

Взаимодействуют со щелочью, образуя нормальную соль.

Основные соли получают в случаях, когда лишь часть гидроксильных групп основ замещается на кислотные остатки кислот (например, Cu (OH) или Cl, Fe (OH) CO3). Такие соединения диссоциируют на катионы металлов и анионы гидроксила и кислотного остатка. Химические свойства солей данной группы включают характерные химические признаки и солевых веществ, и основ одновременно:

Характерно термическое разложение;

Взаимодействуют с кислотой.

Существует еще понятие комплексных и

Комплексные содержат комплексный анион или катион. Химические свойства солей такого типа включают реакции разрушения комплексов, сопровождающиеся образованием малорастворимых соединений. Кроме этого, они способны обмениваться лигандами между внутренней и внешней сферой.

Двойные же имеют два различных катиона и могут реагировать с растворами щелочей (реакция восстановления).

Способы получения солей

Данные вещества можно получить следующими способами:

Взаимодействием кислот с металлами, которые способны вытеснять атомы водорода;

При реакции основ и кислот, когда гидроксильные группы основ обмениваются с кислотными остатками кислот;

Действием кислот на амфотерные и соли или металлы;

Действием оснований на кислотные оксиды;

Реакцией между кислотными и основными оксидами;

Взаимодействием солей между собой или с металлами ;

Получение солей при реакциях металлов с неметаллами;

Кислые солевые соединения получают при реакции средней соли с одноименной кислотой;

Основные солевые вещества получают путем взаимодействия соли с небольшим количеством щелочи.

Итак, соли можно получить многими способами, так как они образуются в результате многих химических реакций между различными неорганическими веществами и соединениями.

Соли – это химические соединения, в которых атом металла связан с кислотным остатком. Отличие солей от других соединение состоит в том, что у них явно выражен ионный характер связи. Поэтому связь так и называют – ионной. Ионная связь характеризуется ненасыщенностью и ненаправленностью. Примеры солей: хлорид натрия или кухонная соль – NaCl, сульфат кальция или гипс – СаSO4. В зависимости от того, насколько полно заменяются атомы водорода в кислоте или гидроксо-группы в гидроксиде различают средние, кислые и основные соли. В состав соли может входить несколько катионов металла – это двойные соли.

Средние соли

Средние соли – это соли, в которых происходит полное замещение атомов водорода ионами металла. Кухонная соль и гипс – таких солей. Средние соли охватывают большое количество соединений, часто встречающихся в природе, например, обманка – ZnS, пиррит – FeS2 и т.д. Этот вид солей самый распространенный.

Средние соли получают реакцией нейтрализации, когда и основание взяты в эквимолярных соотношениях, например:
H2SO3 + 2 NaOH = Na2SO3 + 2 H2O
Получается средняя соль . Если взять 1 моль гидроксида натрия, то реакция пойдет следующим образом:
H2SO3 + NaOH = NaHSO3 + H2O
Получается кислая соль гидросульфит натрия.

Кислые соли

Кислые соли – соли, в которых не все атомы водорода замещены металлом. Такие соли способны образовывать только многоосновные кислоты – серная, фосфорная, сернистая и прочие. Одноосновные кислоты, такие как соляная, азотная и другие, не дают.
Примеры солей: гидрокарбонат натрия или пищевая сода – NaHCO3, дигидрофосфат натрия – NaH2PO4.

Кислые соли можно также получить средних солей с кислотой:
Na2SO3+ H2SO3 = 2NaHSO3

Основные соли

Основные соли – соли, в которых не все гидроксо-группы замещены кислотными остатками. Например, – Аl(OH)SO4 , гидроксохлорид – Zn(OH)Cl, дигидроксокарбонат меди или малахит –Cu2(CO3)(OH)2.

Двойные соли

Двойные соли – соли, в которых два металла замещают атомы водорода в кислотном остатке. Такие соли возможны для полиосновных кислот. Примеры солей: карбонат натрия калия – NaKCO3, сульфат калия – KAl(SO4)2.. Самыми распространенными в быту двойными солями являются квасцы, например, алюмокалиевые квасцы – KAl(SO4)2 12Н2О. Их применят для очистки воды, дубления кожи, для разрыхления теста.

Смешанные соли

Смешанные соли - это соли, в которых атом металла связан с двумя разными кислотными остатками, например, хлорная известь - Ca(OCl)Cl.