Типы т клеток. Активность cd4 т-клеток воспаления

При контакте с соответствующим антигеном, представленным прилежащими макрофагами, Т-лимфоциты специфического клона размножаются, выделяя большое число активированных, специфически реагирующих Т-клеток, что соответствует выделению антител активированными В-клетками. Основное различие состоит в том, что в лимфу выделяются не антитела, а целые активированные Т-клетки. Затем они выходят в кровоток и распределяются по телу, проходя через капиллярные стенки в тканевые пространства, оттуда - назад в лимфу и снова в кровь, циркулируя так по всему телу иногда в течение месяцев или даже лет.

Формируются также лимфоцитарные Т-клетки памяти, подобно тому, как формируются В-клетки памяти в системе антител . Это означает, что, когда антиген активирует клон Т-лимфоцитов, многие из вновь образованных лимфоцитов сохраняются в лимфоидной ткани, становясь дополнительными Т-лимфоцитами данного специфического клона; эти клетки памяти равномерно распределяются по лимфоидной ткани всего тела. При последующем появлении того же антигена в любой части тела активированные Т-клетки выделяются гораздо быстрее и в большем количестве, чем во время первого воздействия.

Антиген-представляющие клетки, белки ГКГ и рецепторы для антигенов на Т-лимфоцитах . Реакции Т-клеток в высшей степени антигенспецифичны, как и реакции антител, выделяемых В-клетками, и так же важны в защите против инфекции. Действительно, Т-клетки необходимы как для запуска реакций приобретенного иммунитета, так и для ликвидации внедрившихся патогенов.

В-лимфоциты распознают интактные антигены, в то время как Т-лимфоциты реагируют на антигены только после их связи со специфическими молекулами, называемыми белками ГКГ, на поверхности антиген-представляющих клеток в лимфоидных тканях. К трем главным типам антиген-представляющих клеток относятся макрофаги, В-лимфоциты и дендритные клетки. Дендритные клетки, наиболее мощные из антиген-представляющих клеток, локализуются в теле повсюду, и единственная известная их функция - представлять антигены Т-клеткам.

Для осуществления активации Т-клеток их связь с антиген-представляющими клетками должна быть достаточно продолжительной, и решающее значение для реализации этого условия имеет взаимодействие белков клеточной адгезии.

Белки ГКГ кодируются большой группой генов, которую называют главным комплексом гистосовместимости. Белки ГКГ связывают пептидные фрагменты антигенных белков, разрушающихся внутри антиген-представляющих клеток, и затем транспортируют их к клеточной поверхности. Существует два типа белков ГКГ: (1) белки ГКГ-I, представляющие антигены цитотоксическим Т-клеткам; (2) белки ГКГ-II, представляющие антигены Т-хелперам. Специфические функции цитотоксических Т-клеток и Т-хелперов обсуждаются далее.

Антигены на поверхности антиген-представляющих клеток связываются с рецепторными молекулами на поверхностях Т-клеток так же, как они связываются с белковыми антителами плазмы. Эти рецепторные молекулы состоят из вариабельного элемента, подобного вариабельному участку гуморального антитела, но в этом случае стволовой участок вариабельного элемента прочно связан с клеточной мембраной Т-лимфоцита. На одиночной Т-клетке может быть до 100000 рецепторных участков.

иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM , позже переключаются на продукцию IgG , IgE , IgA).

Энциклопедичный YouTube

    1 / 5

    ✪ B-лимфоциты и T-лимфоциты популяций CD4+ и CD8+

    ✪ Цитотоксические T-лимфоциты

    ✪ T-лимфоциты

    ✪ Лимфоциты

    ✪ B-лимфоциты (B-клетки)

    Субтитры

    Я уже рассказал об основных клетках специфической иммунной системы, а сейчас мы еще раз обобщим изученное. Давайте начнем с B-лимфоцита, которого я всегда рисую синими цветом.. Вот он перед вами. У B-лимфоцитов на поверхности присутствуют мембранные иммуноглобулины, причем у каждого такого лимфоцита свой вариант вариабельного домена. Повторю: у B-лимфоцитов на поверхности есть мембранные иммуноглобулины, и у каждого такого лимфоцита свой вариант вариабельного домена. Вариабельные домены нарисую розовым. У другого B-лимфоцита будут другие вариабельные домены. Поэтому они могут реагировать на самые разные антигены, проникшие в организм. При этом B-лимфоциты активируются. Что для этого нужно и что при этом происходит? Давайте поговорим о том, что происходит при активировании В-лимфоцитов. Что нужно для запуска активации? Для этого нужно, чтобы патоген связался с мембранным иммуноглобулином. Запишем, что патоген связывается. Патоген связывается с мембранным иммуноглобулином. Но этого мало. Обычно B-лимфоциту нужна стимуляция T-лимфоцитом. Так и пишем: стимуляция Т- лимфоцитом. В какой ситуации необходима такая стимуляция? B-лимфоцит является антигенпрезентирующей клеткой. Он поглощает антиген, расщепляет его и демонстрирует вместе с ГКГ класса 2. Его мы тоже сейчас нарисуем. Это ГКГ класса 2. С ним связываются фрагменты антигена. С этим комплексом связывается активированный T-хелпер, у которого есть рецептор с вариабельным доменом, специфичным для этого конкретного антигена. Да, кривоватый получился рецептор, но суть ясна, по крайней мере, я буду на это надеяться. После активации следует дифференцировка: клетка делится, и ее потомки могут стать эффекторными клетками. Это справедливо и для T-, и для B-лимфоцитов. После активации лимфоцит производит эффекторные клетки и клетки памяти. Клетки памяти сохраняются надолго, и их в результате деления получается много. При повторном проникновении того же патогена он с большой вероятностью наткнется на клетку памяти, запустив быстрый иммунный ответ. Эффекторные B-лимфоциты – это фабрики по производству иммуноглобулинов. Итак, эффекторные B-лимфоциты – производят иммуноглобулин. Логика такая: раз антитело подходит к антигену, попавшему в организм, нужно синтезировать побольше. Все производственные мощности клетки принимаются синтезировать антитела. Расскажу вам один факт, который мне подсказала жена. Подслушав то, как я записывал прошлое видео. Она специалист в гематологии и разбирается в иммунологии, так что я ей в этом доверяю: она в этом деле эксперт. В прошлом ролике я опрометчиво заявил, что антитела вырабатывают активированные эффекторные B-лимфоциты. Так оно и есть на самом деле – антитела вырабатываются исключительно B-лимфоцитами. Однако, для секретирующих антитела клеток есть свое название. Эти эффекторные B-лимфоциты обычно называют плазматическими клетками. Запишу термин. В ходе дифференцировки меняется название. Так называют B-лимфоцит, который начал выделять антитела. После этого его называют исключительно плазматической клеткой. Так что на вопрос о том, какие клетки производят антитела, не отвечайте, что это B-лимфоциты. Правильным будет ответ: плазматические клетки. Это общепринятый термин, используемый в иммунологии, а также ревматологии. Простите, я сказал, что моя жена – гематолог? Нет, она ревматолог. Иногда я в этом путаюсь. Так вот, суть B-лимфоцито в производстве антител, которые свяжутся с антигенами вирусов или бактерий и сделают их заметными для макрофагов и прочих фагоцитов. Но вот и все о них, теперь переходим к T-лимфоцитам. Я расскажу о них то, чего не было в прошлых роликах. Так вот, существует две разновидности T-лимфоцитов. Вы уже знаете о хелперах и цитотоксических T-лимфоцитах, но есть и другая классификация лимфоцитов, и я расскажу вам о ней. Итак, две разновидности. У обеих – T-клеточный рецептор. Нарисую его вот таким образом. T-клеточный рецептор. Кроме того, на их мембранах есть ряд других белков. У некоторых T-лимфоцитов есть мембранный белок, называемый CD4. CD4. У других T-лимфоцитов есть другой белок – это CD8. Его тоже подпишем. CD8. Лимфоцит справа называется CD8-положительным T-лимфоцитом. У него на мембране есть CD8. А вот CD4-положительный T-лимфоцит. Вот две разновидности. Их разделяют по этим белкам. Белок CD4 – это рецептор, который имеет сродство с белками ГКГ класса 2. Большинство CD4-положительных клеток – это T-хелперы. В большинстве случаев, если в разговоре упоминают CD4-положительные клетки, то по привычке имеют в виду именно хелперные T-лимфоциты. Обычно говорят о них. Пожалуй, я подпишу его - T-хелпер. Рецептор CD8 имеет сродство с ГКГ класса 1. Укажем это на рисунке. У раковых клеток ГКГ класса 1 на мембране связан с антигенами рака. Поэтому CD8 характерен для цитотоксических лимфоцитов. CD8 характерен для цитотоксических лимфоцитов. Обычно до того как клетка активирована, ее называют CD4- или CD8-положительной, а о функции лимфоцита говорят уже после активации. Уже после. Это особенности терминологии. Надеюсь, суть вы улавили. Теперь вспомним, чем занимается этот лимфоцит. Он связывается с белками ГКГ, которые находятся на мембране вместе с антигенами. Вот ГКГ класса 1. Как я уже говорил в прошлом ролике, он есть у каждой клетки с ядром. Допустим, в клетке произошло что-то плохое. Что-то нехорошее, может быть, это вирус. Может быть, рак. Пораженная клетка должна умереть, иначе она будет копировать вирус или размножаться, если это опухоль. Так вот, CD8-положительные T-лимфоциты убивают клетки, пораженные вирусом или онкологией. Они убивают пораженные клетки, которые в противном случае могли угрожать всему организму, в целом. T-хелперы – совсем другое дело. Давайте возьмем дендритную клетку – антигенпрезентирующую клетку. У нее есть ГКГ класса 2, с которым соединяются фрагменты переваренного антигена. Он активирует хелперные T-лимфоциты, которые делятся и дифференцируются в эффекторные клетки, а так же клетки памяти. У эффекторного T-лимфоцита есть несколько функций. Хелперный T-лимфоцит активирует B-лимфоциты и выделяет цитокины. Выделяет цитокины. Активированный лимфоцит выделяет множество веществ, которые служат сигналом другим клеткам, например другим лимфоцитам, поднимая при этом тревогу. Часть этих цитокинов помогает цитотоксическим лимфоцитам в их активации. Цитокины поднимают тревогу, и CD8-положительные, то есть цитотоксические T-лимфоциты, эффекторные лимфоциты, принимаются убивать клетки. Что касается клеток памяти, то это копии оригинальных лимфоцитов, которые надолго сохраняются в этом месте на случай повторения угрозы, чтобы обеспечить более быстрый ответ. Надеюсь, что не сильно вас запутал новыми терминами, но это было необходимо. И теперь вы знаете, что антитела синтезируют не B-лимфоциты, не их, а клетки, у которых есть собственное название. Это плазматические клетки или плазмоциты.

Типы Т-лимфоцитов

Т-лимфоциты, обеспечивающие центральную регуляцию иммунного ответа.

Дифференциация в тимусе

Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга , которые мигрируют в тимус и дифференциируются в незрелые тимоциты . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.

Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии, тимоциты не экспрессируют корецепторы CD4 и CD8, и поэтому классифицируются как двойные негативные (англ. Double Negative (DN) ) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (англ. Double Positive (DP) ) (СD4+CD8+). Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов (англ. Single Positive (SP) ): или (CD4+), или (CD8+).

Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 (англ. Double Negative 1 ), тимоциты имеют следующую комбинацию маркеров: CD44 +CD25 -CD117 +. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками (англ. Early Lymphoid Progenitors (ELP) ). Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например В-лимфоциты или миелоидные клетки). Переходя на подстадию DN2 (англ. Double Negative 2 ), тимоциты экспрессируют CD44 +CD25 +CD117 + и становятся ранними Т-клеточными предшественниками (англ. Early T-cell Progenitors (ETP) ). В течение DN3 подстадии (англ. Double Negative 3 ), ETP клетки имеют комбинацию CD44 -CD25 + и вступают в процесс β-селекции.

β-селекция

Гены Т-клеточного рецептора состоят из повторяющихся сегментов, принадлежащих к трём классам: V (англ. variable ), D (англ. diversity ) и J (англ. joining ). В процессе соматической рекомбинации генные сегменты, по одному из каждого класса, соединяются вместе (V(D)J-рекомбинация). Случайное объединение последовательностей сегментов V(D)J приводит к появлению уникальных последовательностей вариабельных доменов каждой из цепей рецептора. Случайный характер образования последовательностей вариабельных доменов позволяет генерировать Т-клетки, способные распознавать большое количество различных антигенов, и, как следствие, обеспечивать более эффективную защиту против быстро эволюционирующих патогенов. Однако этот же механизм зачастую приводит к образованию нефункциональных субъединиц Т-клеточного рецептора. Гены, кодирующие β-субъединицу рецептора, первыми подвергаются рекомбинации в DN3-клетках. Чтобы исключить возможность образования нефункционального пептида, β-субъединица образует комплекс с инвариабельной α-субъединицей пре-T-клеточного рецептора, формируя т. н. пре-T-клеточный рецептор (пре-ТКР) . Клетки, неспособные образовывать функциональный пре-ТКР, погибают в результате апоптоза . Тимоциты, успешно прошедшие β-селекцию, переходят на подстадию DN4 (CD44 -CD25 -) и подвергаются процессу позитивной селекции .

Позитивная селекция

Клетки, экспрессирующие на своей поверхности пре-ТКР все ещё не являются иммунокомпетентными, так как не способны связываться с молекулами главного комплекса гистосовместимости. Для узнавания молекул ГКГ T-клеточным рецептором необходимо наличие корецепторов CD4 и CD8 на поверхности тимоцитов. Образование комплекса между пре-ТКР и корецептором CD3 приводит к ингибированию перестроек генов β-субъединицы и в то же время вызывает активацию экспрессии генов CD4 и CD8. Таким образом тимоциты становятся двойными позитивными (DP) (CD4+CD8+). DP-тимоциты активно мигрируют в корковое вещество тимуса, где происходит их взаимодействие с клетками кортикального эпителия , экспрессирующими белки обоих классов ГКГ (MHC-I и MHC-II). Клетки, неспособные взаимодействовать с белками ГКГ кортикального эпителия, подвергаются апоптозу , в то время как клетки, успешно осуществившие такое взаимодействие, начинают активно делиться.

Негативная селекция

Тимоциты, прошедшие позитивную селекцию, начинают мигрировать к кортико-медуллярной границе тимуса. Попадая в медуллу, тимоциты взаимодействуют с собственными антигенами организма, презентированными в комплексе с белками ГКГ на медуллярных тимических эпителиальных клетках (мТЭК). Тимоциты, активно взаимодействующие с собственными антигенами, подвергаются апоптозу . Негативная селекция предотвращает появление самоактивирующихся Т-клеток, способных вызывать аутоиммунные заболевания клон . Некоторые из клеток этого клона превращаются в эффекторные Т-клетки , которые выполняют функции, специфичные для данного типа лимфоцита (например, выделяют цитокины в случае Т-хелперов или же лизируют поражённые клетки в случае Т-киллеров). Другая часть активированных клеток трансформируется в Т-клетки памяти . Клетки памяти сохраняются в неактивной форме после первичного контакта с антигеном до тех пор, пока не наступает повторное взаимодействие с тем же антигеном. Таким образом, Т-клетки памяти хранят информацию о ранее действовавших антигенах и обеспечивают вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный.

Взаимодействие Т-клеточного рецептора и корецепторов (СD4, CD8) с главным комплексом гистосовместимости важно для успешной активации наивных Т-клеток, однако его самого по себе недостаточно для дифференциации в эффекторные клетки. Для последующей пролиферации активированных клеток необходимо взаимодействие т. н. костимулирующих молекул. Для Т-хелперов такими молекулами являются рецептор CD28 на поверхности Т-клетки и иммуноглобулин B7 на поверхности антигенпрезентирующей клетки.

Дендритные клетки – часть иммунной системы организма. Их сооткрывателем и открывателем ряда их ключевых функций был Ральф Штейнман , за что в 2011 году он получил Нобелевскую премию. По воле случая получилось так, что доктор Штейнман был единственным, кому Нобелевская премия досталась посмертно (сама по себе премия присуждается живым людям). Казус заключался в том, что смерть господина Штейнмана и объявление о присуждении ему премии произошли в один день (в пятницу), но о смерти было объявлено только в понедельник. Комитет Нобелевской премии решил, что технически на момент объявления победителя доктор Штейнман был жив, и ситуацию не стали «переигрывать».

Дендритные клетки (Dendritic cells, DCs) получили свое название за внешнюю схожесть с дендритами нейронов. Они являются частью врожденного иммунитета и играют важную роль в активации адаптивного иммунитета.

Цель заметки – раскрыть базовые принципы активации Т-клеток дендритными клетками и познакомить читателя с необходимой терминологией.

  • Врожденная и адаптивная иммунная система;
  • Общие принципы функционирования врожденной иммунной системы;
  • Pathogen-associated molecular patterns (PAMPs) и pattern recognition receptors (PRRs);
    • Небольшой фокус на дендритных клетках и интерфероне I типа.
  • Коротко о разных видах клеток адаптивной иммунной системы;
  • Дендритные клетки и их функции:
    • Antigen presenting cells и активация Т-клеток;
    • MHC-белки и пептидные «сигнатуры» микробов;
    • Разница MHC I и MHC II;
    • Активация дендритных клеток молекулярными паттернами микробов;
    • CCR7 (рецептор хемокина 7) и миграция в дендритных клеток в лимфоузлы;
    • Циркуляция наивных Т-клеток и попадание их в лимфоузлы;
    • Презентация антигена дендритными клетками и принцип «двойного рукопожатия»;
    • Активация, экспансия и деактивация Т-клеток.

Рассказ не хочется ограничивать исключительно нюансами функций DCs. Хочется, чтобы эта информация накладывалась на какую-то базу о работе иммунной системы. При этом попытки охватить все и сразу не будет. Комплиментарная система, подробности создания и работы антигенов, активация B-клеток и многого-много другого в заметке не будет.

Врожденная иммунная система

Innate immune system (врожденный иммунитет) – мгновенно реагирует на заранее определенное и небольшое количество патогенных паттернов;

Adaptive immune system (адаптивный иммунитет) с задержкой реагирует, но на любое антитело. В последствии запоминая антитело, и в последующие разы реактивно на него реагируя.

Основной клеточный состав врожденной иммунной системы:

  • Циркулирующие в крови клетки:
    • Нейтрофилы, фагоцитируют бактерии, но быстро погибают (в течение часа), секретируют цитокины итд;
    • Моноциты, преобразовываются в макрофаги при попадании в ткани;
  • Дозорные клетки (sentinel cells):
    • Маркофаги, фагоцитоз микробов и мертвых клеток (в основном нейтрофилов), секретируют цитокины, несколько месяцев жизни итд;
    • Тучные клетки (mast cells), секретируют цитокины, гистамины итд;
    • Дендритные клетки, запускают антивирусный ответ, активируют Т клетки итд.

Дозорные клетки находятся в тканях и реагируют на микробы после пересечения последними эпителиальных барьеров кожи и кишечника.

Циркулирующие клетки иммунной системы находятся в крови. И при воспалении попадают в нужные ткани.

Примерный порядок активации врожденного иммунитета:

  • Микробы пересекают эпителиальные барьеры;
  • Рецепторы дозорных клеток опознают «непрошенных гостей»;
  • Дозорные клетки секретируют провоспалительные цитокины;
  • Цитокины связывают на рецепторах эндотелия;
  • Что активирует молекулы адгезии внутри сосудов;
  • Различные молекулы адгезии с разной аффинитивностью связываются с соответствующими лигандами на поверхности циркулирующих иммунных клеток:
    • Например, e-selectin связывается с низкой аффинитивностью с лингадом e-selectin на нейтрофилах, что затормаживает их движение;
    • I-CAM связывается с высокой аффинтивностью с LFA-1 белком иммунной клетки, что останавливает иммунную клетку;
  • После полной остановки иммунные клетки просачиваются с воспаленную ткань и начинают все доступными им способами уничтожать микробы;
  • Первыми приходят нейтрофилы, фагоцитируют бактерии и через пару часов погибают сами; За ними приходят моноциты, превращаются в макрофаги и «подъедают» остатки трупов как микробов, так и нейтрофилов.

Остается вопрос: как дозорные клетки врожденного иммунитета опознают микробы?

PAMPs (Pathogen-associated molecular patterns) – паттерны молекулярных патогенов;

PPRs (Pattern recognition receptors) – рецепторы, опознающие паттеры.PAMPs:

  • Вирусные (находятся внутри клетки):
    • Односпиральные РНК;
    • Двуспиральные РНК
  • Бактериальные (в большей степени на поверхности клетки):
    • Паттерны Грам-отрицательные паттерны:
      • Липополисахариды (LPS) клеточной стенки;
      • Флагеллины («жгутики» для перемещения);
    • Паттерны Грам-положительных бактерий:
      • Флагеллины;
      • Тейхоивые кислоты;
      • Пептидогликаны

Бактерии уничтожаются при помощи фагоцитоза и разрушения их клеточной стенки.

Цепочка будет такой: бактерия связывается с PPRs на поверхности клетки (так называемые TLRs toll like receptors) → димеризация рецепторов и запуск цепочки внутриклеточных сигналов ˧ деактивация ингибитора Nf-Kb → выраженность транскрипторного фактора Nf-Kb → клеточные изменения, в частности секреция цитокинов TNFα и IL-1.

Плазмоцитоидные дендритные клетки и антивирусный ответ

С вирусами ситуация чуть интересней, и тут к нам возвращаются дендритные клетки.

Дендритные клетки реагируют на вирусные PAMPs секретированием интерферонов 1 типа. INF type 1 приводят клетки (например, эпителия) в противо-вирусное состояние. Которое заключается в большей подверженности апоптозу зараженными клетками, выраженности белков/ферментов, которые мешают вирусу размножаться и которые могут наносить урон ДНК/РНК вируса.

Сами клетки в противовирусном состоянии также способны секретировать INF type 1.

Дендритные клетки

Необходимые вводные закончились, пора приступить к antigen presenting cells. К антиген презентующим клеткам относятся дендритные клетки, макрофаги и B-клетки.

В дальнейшем речь будет идти о том, как DCs активируют Т-клетки адаптивной иммунной системы.

Т-клетки, MHC I и MHCII

Т клетки своими рецепторами могут воспринимать только пептиды, представленные им на MHC белках антиген презентующих клеток.

MHC II

  • Отвечает за бактерии;
  • Дендритные клетки интернализируют бактерии, уничтожают их в лизосомах, в итоге мы получаем пептидную «сигнатуру» бактерии;
  • MHC с пептидом отправляется к мембране;
  • MHC II связываются с рецепторами CD4+ клеток (T helpers, которые активируют B-клетки и клетки врожденной иммунной системы;
  • MHC II есть у антиген презентующих клеток.

MHC I

  • Отвечает за вирусы (тему опухолей пропустим);
  • Вирусный белок проходит юбиквинацию и становится доступных протеазам;
  • Протеаза «расщепляет» вирусный белок до пептидов;
  • Вирусный пептид с помощью транспортера TAP попадает в эндоплазматический ретикулум, откуда с MHC I комплексом попадает на мембрану;
  • MHC I активирует CD8+ клетки (цитотоксичные T клетки, которые уничтожают зараженные вирусы;
  • MHC I есть у большинства клеток, что объясняется особенностью вирусов.

Дендритные клетки. Активация и миграция в лимфоузлы

Для активации дендритных клеток должно произойти 2 события:

  • MHC белок с пептидом микроба на поверхности клетки (значит он был так или иначе интернализирован и расщеплен до пептидов);
  • PAMP рецепторы дендритных клеток должны быть активированными микробами;

При выполнении двух этих условий дендритные клетки выражают CD80/CD86 (подробнее чуть позже) и CCR7 (хемокин рецептор 7), выраженность которого приводит к тому, что DCs мигрируют в лимфососуды и по ним попадают во вторичные лимфо-органы. В частности, в лифмоузлы, где в межмембранном пространстве встречаются с Т-клетками.

Дендритные клетки активируют Т клетки

Т-лимфоциты путешествуют по крови по попадают с мемфоликулярное пространоство лимфоузлов при помощи кровотока и так называемых High endothelial venules (HEV).

Дело в том, что Т-клеток, аффинитивных определенному антигену, очень немного. Поэтому они путешествуют по организму, заходя ненадолго в лимфоузлы, куда активированные дендритные клетки попадают из тканей.

Для активации Т-клеток должно пройти 2 сигнала:

Сигнал 1. Антиген должен связаться с рецептором Т-клетки (нужна Т клетка с необходимой аффинитивностью рецептора;

Сигнал 2. Костимулирующие молекулы должны соединиться. Это B7-1 (CD80) и B7-2 (СD86) на стороне DCs и CD-28 на стороне Т-клеток.

Сигнал 1 без сигнала 2 приведет к апоптозу или анергии (угасание активной иммунной функции) Т-клетки.

После активация Т клетки проходят clonal expansion, активно делятся, их становятся десятки тысяч в случае с CD4+ и даже сотни тысяч в случае CD8+. Плюс Т-клетки после активации приобретают некоторые полезные фукнции.

Я опущу вопрос активации B-клеток Т-клетками, вопрос более глубокой функции T helpers и T killers. Остановлюсь только на активации Т клеток. В ткани они попадают примерно также, как циркулирующие в кроки клетки врожденной иммунной системы (см выше).

Деактивация Т-клеток

Любое воспаление (особенно цитотоксичное) чревато последствиями для организма. И этот процесс на уметь «тормозить».

В лимфоузлах это за это отвечает белок CTLA4 на Т-клетках, который связывается вместо CD28 с B7-1/B7-2. Это приводит к тому, что во время активации у нас будет только сигнал 1 и Т клетка будет неактивной.

Ткани (и опухоли) выражают PD-1 лиганд (PD-1, programmed death), который связывается с PD-1 белком Т-клеток, что приводит к их exhaustion (истощению), то есть деактивации.

Моноклональные антитела, подавляющие функции CTLA-4 и PD-1, одно из последних слов в борьбе с раковыми заболеваниями.

Выводы:

  • Дендритные клетки активируются двумя сигналами:
    • MHC белком на мембране, на котором будет пептидный антиген;
    • PAMPs микробов связывается с рецепторами DCs;
  • Активированные дендритные клетки выражают CCR7, что позволяет им мигрировать через лимфо-сосуды в лимфоузлы и «искать» в междфоликулярном пространстве нужную Т-клетку;
  • Активация Т-клеток включает в себя 2 сигнала:
    • Сигнал 1 MHC с пептидом (антигеном) связываются с нужным TCR (T cell receptor);
    • Сигнал 2, костимуляция CD86/CD80 DCs с CD28 Т-клеток;
  • При наличии только сигнала 1 Т-клетки подвергаются апоптозу или анергии;
  • После активации начинается экспансия и дифференциация Т-клеток, которая является одним из компонентов ответа иммунной системы.

Источники:

  1. Торможение лейкоцитов молекулами адгезии [видео];

P.S. Это было писать скучно, в виду пересказа без моего вклада, но необходимо для ряда последующих заметок.

Словарь по итогам заметки:

  • Врожденная иммунная система:
    • Дозорные клетки (тучные, макрофаги, дендритные – это только основные, есть и другие);
    • Циркулирующие клетки (моноциты, нейтрофилы);
    • Также врожденная иммунная система включает в себя барьеры (эпителий, муцин), белки и молекулы (комплименты, агглутинины);
  • Адаптивная иммунная система: B-клетки, T-помощники, цитотоксичные Т-клетки;
  • Дендритные клетки:
    • MHC I,
    • MHC II
    • B7-1 (CD80)
    • B7-2 (CD86)
  • Т-клетки:
    • CD28
    • CTLA4
  • Клональная селекция;
  • Клональная экспансия
  • Антиген-презентующие клетки (DCs, макрофаги, B-клетки);
  • Анергия

Уникальным свойством антигена, проникшего в организм, яв­ляется его способность специфически связываться с лимфоцитами и активировать их.

Согласно клонально-селекционной теории, выдвинутой в 1959 г. Бернетом, при нормальном развитии в организме возникает набор из тысяч очень небольших по объему субпопуляций лимфоцитов, имеющих на наружной мембране рецепторы лишь к одной какой-то детерминанте. Иммунный ответ оказывается специфическим в силу того, что проникший в организм антиген избирательно свя­зывается только с теми клетками, на поверхности которых имеют­ся соответствующие рецепторы. С остальными клетками этот ан­тиген не взаимодействует.

Связывание антигена индуцирует активацию лимфоцита, то есть запускает ряд процессов, приводящих к клеточному деле­нию и дифференцировке. В процессе дифференцировки лим­фоцитов происходит развитие таких эффекторных функций,


как антителообразование у В-клеток и появление цитотокси-ческой активности у части Т-клеток.

Под активацией лимфоцитов понимается достаточно слож­ный процесс перехода клетки из фазы G0 в фазу G1, вызванный взаимодействием со стимулирующим агентом (например, антиге­ном или митогеном). Термин «покоящийся лимфоцит» относится к лимфоцитам, которые находятся в фазе G0 (в этой фазе клеточ­ного цикла клетки не делятся), характеризующейся низким уров­нем метаболической активности, т. е. низкой скоростью синтеза белков и РНК при отсутствии синтеза ДНК. Реагирующие с анти­геном клетки согласно клонально-селекционной теории Бернета обычно находятся в покоящемся состоянии до получения стиму­лирующего сигнала.

При взаимодействии с антигеном в ранее «покоившихся лим­фоцитах» наряду с метаболическими изменениями, характерными для делящихся клеток, происходят процессы созревания, различ­ные в разных субпопуляциях лимфоцитов. В итоге каждая субпо­пуляция приобретает набор присущих только ей поверхностных антигенов и специфических функций.

Последовательность процессов активации лимфоцитов в об­щем виде может быть представлена следующим образом. Рецепто­ры на поверхности лимфоцита связывают стимулирующий лиганд (например, антиген) и сшиваются друг с другом, образуя неболь­шие локальные кластеры сшитых рецепторов, которые становятся наиболее эффективными в передаче активирующего сигнала.

Локальные кластеры повышают проницаемость мембраны лим­фоцита для одновалентных катионов, поступающих внутрь клет­ки, что приводит к деполяризации мембраны и локальному увели­чению концентрации Na + -, K + -АТФазы. Вследствие сшивки ре­цепторов лимфоцита активируется мембранная метилтрансфе-раза, которая катализирует образование достаточного количества монометилфосфатидилэтаноламина, повышающего текучесть мем­браны и вызывающего ее локальную перестройку. В результате этого открываются каналы, через которые ионы Са 2+ проникают (диффундируют) в лимфоцит. Вследствие такого локального уве­личения концентрации Са 2+ с внутренней стороны мембраны ак­тивируется фосфолипаза А2, катализирующая образование лизо-лецитина и арахидоновой кислоты из фосфатидилхолина. Эти ре­акции происходят в течение первых 30 мин после контакта лим­фоцита с антигеном.



Одновременно ионы Са 2+ активируют и другой цитоплазматичес-кий фермент, расщепляющий фосфатидилинозитол (по крайней мере в Т-клетках). Высвобождающаяся арахидоновая кислота при участии липоксигеназы и циклоксигеназы расщепляется с образова­нием лейкотриенов и простагландинов (одни продукты каскада ара­хидоновой кислоты регулируют синтез РНК и ДНК, другие - влия­ют на поглощение ионов Са 2+ или активность аденилатциклазы).


Лизолецитин с помощью ионов Са 2+ активирует гуанилат-циклазу, а активность аденилатциклазы уменьшается вследствие ее соседства с Ш + -К + -АТФазой, конкурирующей с ней за АТФ. Все это приводит к временному увеличению концентрации цГМФ, активирующего протеинкиназы, трансферазы жирных кислот и ферменты, увеличивающие синтез мембранных фосфолипидов. Из других протеинкиназ важное значение имеет активация проте-инкиназ, способствующих биосинтезу матричной РНК, полиами­нов и переносу метальных групп.

Поскольку транспорт глюкозы в клетку является Са-зависи-мым процессом, то поток ионов Са 2+ играет важную роль в уве­личении скорости ее транспорта, т. е. поставки исходного ма­териала для обеспечения множества энергозависимых синте­тических процессов. Повышенный транспорт аминокислот и нуклеотидов в клетку вызывает повышенное образование липо-сом, увеличение синтеза рибосомной и матричной РНК и синте­за белка в целом.

Поток ионов Са 2+ активирует сериновую эстеразу, вызываю­щую повышение клеточной подвижности благодаря изменениям в системе циклических нуклеотидов. Кроме того, сериновая эстера-за опосредованно активирует ядерную аденилатциклазу. Увеличе­ние в ядре концентрации цАМФ вызывает активацию киназ, спе­цифически фосфорилирующих кислые негистоновые белки, регу­лирующие транскрипцию и синтез ДНК. Это приводит к синтезу РНК и ДНК, начинающегося на 3-й сутки и достигающего макси­мума на 4...6-е сутки.

Среди факторов, влияющих на активацию лимфоцитов, следу­ет отметить следующие:

антигены, к которым имеются специфические рецепторы на лимфоцитах; популяцию таких лимфоцитов называют антиген-связывающими клетками;

антитела к иммуноглобулинам; сшивка поверхностных имму­ноглобулинов В-клеток с бивалентными антителами к этим имму­ноглобулинам;

интерлейкины IL-1, IL-2;

инсулин; он опосредованно, через активацию аденилатцикла­зы, активирует лимфоциты.

Ингибирующее влияние на лимфоциты оказывают следую­щие факторы:

липиды; наибольшей ингибирующей способностью из липо-протеидов обладают липопротеиды очень низкой плотности (ЛОНП), обусловливающие разобщение между потоком ионов Са 2+ в клетку и концентрацией образующихся при этом цикличес­ких нуклеотидов;

фрагменты компонентов системы комплемента СЗе, СЗс и C3d; они ингибируют пролиферацию Т-клеток и синтез антител в ответ на стимуляцию с помощью антигена.


Несмотря на то что механизмы активации лимфоцитов раз­личных популяций характеризуются определенной общностью, следует отметить и те особенности, которые наблюдаются при активации Т- и В-лимфоцитов, имеющих различные поверхност­ные маркеры, с помощью которых эти клетки взаимодействуют с внешними факторами.

Активация В-лимфоцитов. В-лимфоциты реагируют на три раз­личных типа антигенов:

2. Тимуснезависимый антиген типа 2 (например, не­которые линейные антигены, имеющие часто повторяющуюся, определенным образом организованную детерминанту, - полиме­ры D-аминокислот, поливонил-пирролидон, полисахарид пнев­мококков).

Эти антигены, длительно персистируя на поверхности спе­циализированных макрофагов краевого лимфатического узла и селезенки, специфически связываются с иммуноглобулиновыми рецепторами В-клеток. Таким образом, оба тимуснезависимых ан­тигена способны непосредственно, т. е. без участия Т-клеток, сти­мулировать В-лимфоциты и вызывать преимущественно синтез IgM. Индуцируемый ими иммунный ответ практически не сопро­вождается формированием клеток памяти.

3. Тимусзависимый антиген. Многие антигены
относятся к группе тимусзависимых. В отсутствие Т-лимфоцитов
эти антигены лишены иммуногенности - связавшись с В-клеточ-
ным рецептором, они, подобно гаптенам, не способны активиро­
вать В-клетку. Одна антигенная детерминанта тимусзависимого
антигена связывается с В-клеткой, а остальные - с Т-хелпером,
активируя его. Т-хелперы должны распознавать детерминанты но­
сителя на поверхности реагирующей В-клетки.

Антиген, связавшийся с поверхностными /gA-клетками, попа­дает в эндосомы вместе с молекулами МНС класса II, а затем возвращается на поверхность А-клетки в процессированной фор­ме. Он ассоциирован с молекулами МНС класса II и доступен для распознавания специфическими Т-хелперами. Носитель процессируется в В-клетках, запрограммированных на синтез антител к гаптену. После стимуляции Т-хелперами, распознаю­щими процессированный носитель, В-клеткам удается выпол­нить свою программу, т. е. начать производить антитела, реаги­рующие с гаптеном.

Механизм активации клеток. Связывание поверхностных рецеп­торов (IgM) В-клеток с антигеном или антителами к этим рецеп­торам вызывает совокупность последовательных реакций, анало­гичных реакциям при активации Т-клеток (поступление в В-лим-фоцит ионов Са 2+ и активация протеинкиназ) - это один меха­низм. Другой, имеющий важное значение для Т-зависимых ан-

Тигенов, - это увеличение экспрессии поверхностных молекул МНС класса II уже на самых ранних этапах активации В-клеток. С моле­кулами МНС класса II и процессированным антигеном связывается Т-хелпер, который продуцирует факторы (например, BSF-1 - от англ. B-cell stimulatory factor), обусловливающие переход В-кле­ток в фазу G-1 клеточного цикла. Как и активированная Т-клетка, стимулированный В-лимфоцит приобретает многочисленные по­верхностные рецепторы для ростовых факторов, выделяемых Т-хел-перами, в этом состоянии он готов к пролиферации - основному процессу в следующей фазе иммунного ответа.

Первыми начинают делиться Т-хелперы, на поверхности ко­торых экспрессируются высокоаффинные рецепторы к IL-2. Эти клетки пролиферируют в ответ либо на собственный IL-2, либо на IL-2, продуцируемый субпопуляцией Т-хелперов. Проли­ферацию В-клеточного клона обеспечивают Т-клеточные раство­римые факторы, в частности BSF-1 (фактор роста В-клеток, име­нуемый чаще интерлейкином-4), выделяемые активированными Т-клетками. Под влиянием других факторов (например, BCDF - от англ. B-cell differentiation factor) происходит созревание клона В-лимфобластов и ускорение их преобразования в плазматичес­кие клетки с высоким уровнем секреции IgM. Другой дифферен-цировочный фактор BCDF (также синтезируется активирован­ными Т-хелперами) переключает синтез с IgM на IgG и индуциру­ет те изменения, которые необходимы для обеспечения высокой скорости синтеза антител.

Активация Т-лимфоцитов. Для активации необходимо два сиг­нала. Роль первого сигнала может выполнять антиген (или мито-ген), связанный с молекулой МНС класса II на поверхности анти-генпрезентирующей клетки. Тройное взаимодействие между ан­тигеном, гликопротеином МНС и рецептором Т-лимфоцита гене­рирует сигнал, передаваемый через комплекс рецептора с моле­кулой CD-3 (это мембраносвязанный белковый комплекс, пред­ставляющий собой антигенспецифический Т-клеточный ре­цептор периферических Т-лимфоцитов), и одновременно обес­печивает воздействие на клетку высокой локальной концентра­ции IL-1 (второй сигнал), продуцируемого антигенпрезентирую-щей клеткой.

Активированные Т-клетки секретируют:

IL-2, стимулирующий деление клеток, имеющих рецептор к IL-2;

лимфокин BSF-1, активирующий В-клетки;

лимфокин BSF -2, стимулирующий клональную экспансию ак­тивированных В-лимфоцитов;

лимфокин BCDF -фактор дифференцировки В-клеток, спо­собствующий созреванию клеток с высокой скоростью секре­ции IgM;

лимфокин BCDF-фактор, вызывающий переключение с син­теза IgM на IgG и высокую скорость секреции последнего.

Статья на конкурс «био/мол/текст»: Ученые объединили методы иммунотерапии, цитотерапии и генотерапии для перепрограммирования Т-лимфоцитов в потенциальных «убийц» раковых клеток. Но и этого оказалось недостаточно - следующим шагом стало создание молекулярного «выключателя», с помощью которого можно регулировать время и силу действия активированных Т-клеток. Инновационный метод закладывает основу для резкого сокращения серьезных (а иногда и смертельных) побочных эффектов, вызванных терапией с использованием модифицированных Т-клеток.

Обратите внимание!

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Медицина перешла на новый уровень: клетки стали живым лекарством

В последнее время в терапии опухолевых заболеваний особое внимание уделяется адоптивной иммуноцитотерапии (от англ. adoptive - приемный). При этом часть клеток иммунной системы пациента искусственно «натравливают» на опухолевые клетки. Суть метода состоит в том, чтобы отобрать у пациента необходимые иммунные клетки, обработать их - например, иммунными цитокинами (небольшими белками, выполняющими функции регуляторов деления и дифференцировки специфических иммунных клеток), - а затем вернуть в организм уже активированные клетки, которые и будут помогать бороться с опухолями* (рис. 1).

* - Эта тема является одной из самых горячих направлений клинической иммунологии - см. статью «Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль » . - Ред.

Впервые метод адоптивной иммуноцитотерапии был описан еще в 1988 году - у пациентов с метастатической меланомой (то есть раком кожи на четвертой стадии) наблюдалась регрессия заболевания при терапии с помощью их TIL-клеток (лимфоцитов, инфильтрующих опухоль) . В настоящее время терапия метастатической меланомы на основе TIL-клеток является наиболее эффективным способом лечения данного заболевания, поскольку регрессия опухоли наблюдается у половины пациентов .

Существует несколько вариантов клеток, которые используются в адоптивной иммунотерапии; из них три используются при терапии опухолевых заболеваний: уже знакомые нам TIL-клетки (лимфоциты, инфильтрующие опухоль), LAC-клетки (лимфокин-активированные киллеры) и CIK-клетки (цитокин-индуцированные киллеры). На самом деле собственные Т-клетки организма тоже стараются бороться с опухолевыми клетками, только зачастую опухолевые клетки им «не по зубам». Не то, чтобы совсем - ведь существует иммунный надзор, осуществляемый Т-клетками и естественными киллерами (NK-клетками), с помощью которых иммунная система старается защититься от опухолей, - однако это вовсе не стопроцентная защита. Однако случается, что иммунный надзор не всегда достаточно силен, чтоб предотвратить развитие опухолей: так, при длительном применении иммунодепрессантов после трансплантаций органов повышается частота развития многих опухолей .

Необходима система наведения

Несмотря на сложность получения модифицированных клеток, а также сопутствующий риск возникновения серьезных побочных эффектов, все же главной проблемой метода иммуноцитотерапии является отсутствие способов прицельной доставки вводимых модифицированных иммунных клеток в опухоль. Раковые клетки часто делаются практически «невидимыми» для иммунной системы, и они образуют микросреду, которая подавляет активность и миграцию Т-клеток . Для того, чтобы сбросить мантию-невидимку с опухолевых клеток, Т-лимфоциты надо не только активировать, но и придать им способность прицельно узнавать опухолевые клетки. Т-клетки могут быть перепрограммированы методами генной инженерии путем введения генов, кодирующих рецепторы к опухолевым антигенам (TAA, tumour-associated аntigens) - оснащения собственной «системой наведения». Также можно заодно ввести гены для придания Т-клеткам устойчивости к иммуносупрессии для увеличения выживаемости или облегчения проникновения сконструированных Т-клеток в опухоль. В итоге, могут быть получены высокоактивные «наемные убийцы» раковых клеток .

Для получения эффективных «убийц» Т-лимфоциты модифицируют путем оснащения их искусственными химерными антигенными рецепторами (CAR, chimeric antigen receptors). Рецепторы химерные, поскольку одна часть (распознающая) была «позаимствована» у моноклональных антител, а часть, передающая сигнал, - у Т-клеточного рецептора (ТCR). В качестве внеклеточной «распознающей» части обычно служат вариабельные домены тяжелой и легкой цепи иммуноглобулинов необходимой специфичности (scFv), которые образуют специфичный к опухолевым клеткам антиген-связывающий участок (рис. 2).

Рисунок 2. Структура химерного антигенного рецептора (CAR). CAR состоит из внеклеточного домена (одноцепочечного вариабельного фрагмента антитела (scFv)), соединенного с помощью цепей и трансмембранных доменов с цитоплазматической сигнальной областью. Гены, кодирующие scFv, получены из В-клеток, продуцирующих антитела, специфичные к опухолевому антигену. CAR существует в виде димера, и распознавание опухоли происходит напрямую (без участия MHC). Рисунок из .

Все новое - это хорошо забытое старое. Первые Т-клетки с химерным антигенным рецептором были получены командой ученых под руководством профессора Эсхара (Zelig Eshhar ); результаты работы были опубликованы еще в 1989 году . Эсхар понял, что, обладая данной техникой, Т-клетки можно запрограммировать на нацеленную атаку.

Однако с момента обнаружения химерных антигенных рецепторов до внедрения технологии в практику прошло больше 20 лет. За это время были улучшены химерные антигенные рецепторы - были созданы CAR 2-го поколения, в которые был внесен дополнительный сигнальный домен костимулирующей молекулы, который позволил улучшить активацию Т-клеток и их распространение. В CAR 3-го поколения был добавлен еще один сигнальный домен, что в конечном итоге повысило уровни выживания и размножения модифицированных Т-клеток (рис. 3). В конечном итоге были улучшены способность к «выслеживанию» опухолевых клеток, а также уменьшены побочные эффекты.

Рисунок 4. Бутылка с питательной средой для Т-клеток , которые после введения в них нового рецептора выращивают около 10 дней до достижения ими количества в несколько миллиардов. Тогда они могут быть введены в вены пациента. Рисунок из .

Первые клинические испытания генетически модифицированных Т-лимфоцитов, несущих химерные антигенные рецепторы, прошли в 2012 году. Они выпали на долю девочки по имени Эмили, больной острой лимфобластной лейкемией. После того, как генетически модифицированные Т-клетки были обратно введены девочке, ее состояние резко ухудшилось, и она провела несколько недель в отделении интенсивной терапии на искусственной вентиляции легких. В какой-то момент жизнь Эмили висела на волоске, но в итоге девочка поправилась, и уже три года в ее организме врачи не находят даже единичных раковых клеток .

Побочные эффекты новой терапии

Несмотря на то, что иммуноцитотерапия Т-клетками с CAR является прорывом в области лечения опухолевых заболеваний, есть еще ряд опасностей, которые могут поджидать за углом. Доктор Карл Джун (Carl June ) из университета Пенсильвании был одним из первых, кто опубликовал успешные результаты лечения модифицированными Т-клетками, сравнил то, что происходит внутри тела пациента с «серийным убийством» и «массовым убийством». Когда миллиарды Т-клеток, которые были введены в организм, поделятся, то они смогут обнаружить и убить несколько фунтов опухоли. Но в этом тоже немало риска - многие пациенты страдают от синдрома высвобождения цитокинов (цитокинового шторма) - при борьбе Т-клетки с опухолевой клеткой высвобождается большое количество молекул цитокинов, что представляет угрозу для самого организма. Так, семь пациентов умерло вследствие этого синдрома .

Побочные эффекты связаны с мощной иммунной активностью модифицированных Т-клеток. Одним из камней преткновения является риск высокой токсичности, не позволяющий ввести подобное лечение на регулярной основе. «Т-клетки - действительно мощные создания» , - говорит профессор Венделл Лим (Wendell Lim ), заведующий отделом Департамента клеточной и молекулярной фармакологии Калифорнийского университета. - «Будучи активированными, они могут вызвать смерть. Нам необходима система удаленного контроля, которая сохранит силу этих модифицированных Т-клеток, и позволит специфично „общаться“ с ними и управлять Т-клетками, находящимися в организме» .

Т-клетки взяли под контроль

Ученые из Калифорнийского университета в Сан-Франциско создали молекулярный «включатель», с помощью которого можно управлять действиями генноинженерных Т-лимфоцитов. Как и обыкновенные Т-клетки, несущие CAR, новые Т-клетки с «включателем» будут взаимодействовать с опухолевыми клетками, но не будут переходить «в атаку», пока не будет введен специальный препарат. Данный препарат является своеобразным «химическим мостиком» внутри Т-клеток: он запускает иммунные реакции, «включает» их, переводя в активное состояние. Когда препарат перестает циркулировать в крови, Т-клетки снова переходят в «выключенное» состояние (рис. 5).

Рисунок 5. Титруемый контроль генноинженерных Т-клеток с помощью включаемого химерного антигенного рецептора. С обычным CAR Т-клетки активируются при соединении с клеткой-мишенью, при этом из-за очень сильного иммунного ответа есть риск высокой токсичности. «Включаемый» CAR требует небольшую стимулирующую молекулу для запуска терапевтической функции. Величину ответа (например, «убийства» клеток-мишеней) можно титровать, тем самым уменьшая токсичность при уменьшении количества небольшой стимулирующей молекулы. Рисунок из .

Внедрение «пульта управления» в Т-клетку с химерным антигенным рецептором - это пример простой и эффективной стратегии совмещения собственных и автономных решений клетки (например, обнаружение сигналов болезни) с контролируемыми пользователем из вне. Перегруппировка и расщепление основных частей CAR обеспечивает возможность «включения» и «выключения» химерных антигенных рецепторов. Данная работа также подчеркивает важность разработки оптимизированных биоинертных «пультов управления», таких как небольшие молекулы и свет, вместе с их клеточными компонентами реагирования, в целях повышения точности контролируемой терапии .

Таким образом, правильно дозируя препарат, можно управлять уровнем иммунной активности модифицированных Т-клеток. В частности, благодаря данной технологии можно снизить отрицательные последствия синдрома высвобождения цитокинов. Также иногда нормальные клетки экспрессируют небольшие количества белков, которые являются мишенью для Т-клеток с CAR. Поскольку модифицированные Т-клетки вводят в кровяное русло и они проходят через сердце и легкие, ткани этих органов могут быть повреждены прежде, чем Т-клетки достигнут своих намеченных целей в других частях тела. А с новой технологией Т-клетки будут в «выключенном» состоянии, пока не достигнут цели .

Иммунотерапия с помощью Т-клеток с CAR успешна против рака крови, но, когда дело доходит до твердых опухолей, которые образуются в толстой кишке, молочных железах, мозге и других тканях, модифицированные Т-клетки до сих пор не показывают высокой эффективности. Возможно, метод дистанционного управления Т-клетками позволит разработать более мощные версии химерных антигенных рецепторов, которые позволят Т-клеткам поражать твердые опухоли, при этом не обладая серьезными побочными эффектами.

Литература

  1. Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль ;
  2. Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T. et al. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report . ;
  3. Regalado A. (2015). Biotech’s coming cancer cure . MIT Technology Review ;
  4. Farley P. (2015). ‘Remote control’ of immune cells opens door to safer, more precise cancer therapies . University of California San Francisco ;
  5. Wu C., Roybal K.T., Puchner E.M., Onuffer J., Lim W.A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor . Science . 350 , aab4077..