Противодифтерийная сыворотка: инструкция по применению, описание и состав.

Эти иммунные сыворотки относятся к числу гетерологичных препаратов, так как источником их получения являются в основном лошади. Из числа этих препаратов наиболее велик опыт применения противостолбнячной сыворотки, которую к тому же вводят в основном для профилактики столбняка . Поэтому мы сочли возможным рассмотреть принципиально идентичные особенности производства гетерологичных иммунных сывороток на основе технологической схемы получения противостолбнячной сыворотки.

Донорами или, как говорят, продуцентами этих сывороток являются лошади, которых содержат в иммунизационных клиниках, состоящих из ряда функциональных отделений. Вначале здоровых, отвечающих определенным кондициям иммунологической реактивности лошадей подвергают гипериммунизации - процедуре интенсивной подкожной вакцинации нарастающими дозами анатоксина с адъювантом, завершая при необходимости цикл прививок введением необезвреженного токсина. Для получения различных иммунных сывороток отработаны оптимальные схемы гипериммунизации. На 7-й день после окончания цикла прививок производят кровопускание. Кровь из яремной вены лошади-продуцента получают в объеме, равном 1/50 массы тела животного: так у лошади с массой тела 450 кг берут 9 л крови. (После взятия крови лошадь отдыхает две недели, затем получает очередной, более короткий цикл прививок и вновь подвергается процедуре кровопускания; в качестве продуцентов гипериммунных антитоксических сывороток лошади используются в среднем два года). Бутыль с кровью направляют в отделение технической и химической обработки сыворотки, где осуществляется ее очистка и концентрирование.

В нашей стране и в ряде зарубежных стран это проводится в основном с помощью метода, получившего название диаферм (происходит от слов диализ и ферментация, лежащих в основе технологического процесса). При этом вначале кровь обрабатывают на сепараторах для отделения эритроцитов от плазмы, затем в специальных реакторах, снабженных мешалками, сывороточные белки в плазме подвергают ферментативному гидролизу с помощью пепсина в течение 2 ч в кислой зоне рН при 22-24°С. Ферментированную плазму прогревают в течение 45 мин при 56°С в присутствии 14% сульфата аммония и фильтруют, освобождаясь при этом от денатурированных и выпавших в осадок балластных белков, не обладающих функциями антител. Иммунологически активные белки - глобулины высаливают из фильтрата путем его насыщения сульфатом аммония до концентрации последнего, равной 34% при рН 7,1; отжатый осадок ресуспендируют и очищают вначале от солей путем диализа против проточной воды в течение 48 ч, а затем от оставшихся балластных белков в их изоэлектрической точке (рН 5,2-5,6) с помощью обработки диализата хлороформом. В последующем диализат освобождают от хлороформа и денатурированного белка на сепараторах, практически уже очищенную и концентрированную сыворотку дополнительно обессоливают диализатом и стерилизуют фильтрованием. После этого для стабилизации Физических свойств и биологической активности сыворотку выдерживают в течение 3 месяцев и подвергают повторной фильтрации для освобождения от выпавших в осадок иммунологически инертных липоидосодержащих белков, разливают по ампулам и контролируют.

Следует отметить, что описанный процесс изготовления иммунных сывороток не лишен недостатков. Так, при этом утрачивается до 56-60% белка - носителя антитоксической активности, сыворотка не полностью свободна от балластных белков и остатков пепсина, методика надежной инактивации которого еще не разработана. Именно поэтому для очистки и концентрирования ряда гетерологичных сывороточных препаратов используют методику выделения их гамма-глобулиновой фракции и интенсивно разрабатывают производственную технологию получения чистых антител методами специфической сорбции из сыворотки на иммуносорбентах - специфических антигенах, фиксированных на нерастворимых носителях. Если с помощью метода диаферм-3 производятся противостолбнячная, противодифтерийная, поливалентная противогангренозная, моно- и поливалентная противоботулиническая гетерологичные сыворотки, то также гетерологичные антирабическая сыворотка и сыворотка против клещевого энцефалита производятся в виде более очищенных и концентрированных препаратов гамма-глобулина. Перед выпуском производственных серий противостолбнячной сыворотки следует контролировать:

Физические свойства (сыворотка должна быть прозрачной, без хлопьев, осадка и посторонних включений; содержание белка не должно превышать 15%; рН должен быть в пределах 6,9-7,2);

Стерильность (в посевах на различные питательные среды не должны вырастать никакие микробы);

Пирогенность (у здоровых кроликов, получивших внутривенно сыворотку из расчета 1 мл на 1 кг массы тела, температура в прямой кишке не должна повышаться более чем на 0,8°С в первые 3 ч);

Безвредность (морские свинки, получившие подкожно в оба бока по 5 мл сыворотки, должны оставаться здоровыми в течение 5 дней наблюдения);

Специфическую активность (после 20-дневной выдержки сыворотки при 37°С в опытах абсолютной защиты белых мышей, получивших сыворотку разной концентрации в смеси с опытной дозой токсина, калиброванной по международному стандарту иммунной сыворотки определяют количество международных единиц - ME - антитоксина, содержащихся в 1 мл препарата).

Если результаты контрольных исследований удовлетворяют приведенным требованиям, столбнячную сыворотку, содержащую до 1000 и более ME в 1 мл, передают для профилактики или лечения столбняка в дозах, указанных в прилагаемом наставлении.

Так же контролируют свойства других гетерологичных иммунных сывороток, и лишь методика определения их специфической активности (количество ME в 1 мл), естественно, различается. Подобно вакцинам, иммунные сыворотки хранят в сухом затемненном месте при 3-10°С.

Антитоксические сыворотки и технология их приготовления

Чаще всего антитоксические сыворотки готовят с целью диагностики клостридиозов: злокачественного отека, инфекционной энтеротоксемии, ботулизма и других заболеваний, возбудители которых образуют сильные экзотоксины и имеют множество серологических типов. В качестве антигенов при получении таких сывороток используют анатоксины.

Технологическим примером получения таких сывороток является изготовление антитоксических сывороток Cl. perfringens типов А, В, С, D, Е и F.

В качестве продуцентов таких диагностических сывороток чаще используют валухов тонкорунных пород в возрасте двух лет. Антигенами являются очищенные и концентрированные анатоксины, полученные с помощью соответствующих типов Cl. perfringens. Для каждого типа указанного микроба используют отдельных продуцентов, которых содержат в отдельных боксах. Антигены овцам вводят подкожно в возрастающих дозах с принятым интервалом 4--6 суток между инъекциями. Гипериммунизацию животных прекращают после получения сывороток с активностью, предусмотренной инструкцией по ее изготовлению. Поэтому в процессе эксплуатации у продуцентов берут кровь и в ее сыворотке определяют титры антитоксинов. Активность каждого типа антитоксических сывороток, устанавливают в реакции нейтрализации специфических токсинов при введении их смесей белым мышам или крысам и выражают ее количеством антитоксических единиц.

Получение антитоксических сывороток для диагностики других инфекционных заболеваний осуществляют по такой же схеме. Но в качестве продуцентов могут использоваться другие животные. Разумеется, что в схеме гипериммунизации животных в каждом случае имеются свои особенности.

Диагностические сыворотки для постановки реакции связывания комплемента и технология их приготовления

При ряде инфекционных заболеваний образуются так называемые комплементсвязывающие антитела. При их определении в практике используются специфические диагностические сыворотки, содержащие такие антитела. Показательным примером является приготовление специфических диагностических ящурных сывороток. Дело в том, что вирус ящура обладает высоким плюрализмом. Ом вызывается одним из вариантов вируса ящура. Идентификацию штамма циркулирующего вируса ящура проводят с помощью реакции связывания комплемента (РСК). Специфическую типовую и вариантную сыворотки получают от морских свинок, которых заражают вирусосодержащей суспензией соответствующего типа, с добавлением к ней сапонина и спустя 30--40 суток дополнительно гипериммунизируют тем же материалом путем двух-четырех внутримышечных инъекций. Через 7--10 суток после последней инъекции морских свинок обескровливают и из крови готовят инактивированную сыворотку. Сыворотку проверяют в РСК на активность и специфичность. В качестве антигена для изготовления сывороток используют штаммы вируса ящура, адаптированные к организму новорожденных крольчат или к культурам клеток.

Следует иметь в виду, что при постановке РСК пробирочным способом для учета ее обычно используют гемолитическую (индикаторную) систему, в которой в качестве специфической используется гемолитическая сыворотка (гемолизин). Получается она на биопредприятии путем гипериммунизации кроликов эритроцитами баранов (валухов). Достижение титров гемолизина 1:6000 и выше дает основания к прекращению гипериммунизации кроликов. Через 7--10 суток после последней инъекции кроликам эритроцитов барана их обескровливают, получают сыворотку и консервируют ее фенолом.

При постановке РСК непременным условием является применение в качестве одного из ее компонентов комплемента. Комплемент-- это неспецифический фактор гуморального иммунитета, содержащийся в сыворотках крови теплокровных и холоднокровных животных. Наиболее изучен комплемент морской свинки. Поэтому при постановке РСК в качестве комплемента используют сыворотку крови морских свинок. Для его получения морских свинок выращивают в специальных питомниках. При этом нормы кормления, содержания животных должны соответствовать зооветеринарным требованиям. От здоровых животных, достигших массы 300--350 г, тотально из сердца берут кровь, собирают ее в емкости и отстаивают сыворотку, которую консервируют фенолом, в необходимых случаях высушивают лиофильным способом и после биологического контроля рассылают в диагностические лаборатории.

Следует заметить, что комплемент действует подобно ферменту на комплекс антиген -- антитело, то есть на антигены, уже связанные специфическими антителами. Основная функция комплемента литическая (растворяющая, разрушающая антиген). Нелитические свойства у комплемента проявляются при воздействии его на систему антиген -- антитело, где антиген является растворимым белком или вирусом. В данном случае имеет место лишь укрупнение иммунного комплекса. Это происходит в реакции конглютинации (РК), в которой используют нелитические или слаболитические комплементы лошади, свиньи; но не морской свинки.

61. Иммунные сыворотки, к лассификация.Получение,очистка, применение. Антитоксические сыворотки, получение, очистка, титрование, применение. Осложнения при использовании и их предупреждение. Понятие об иммуномодуляторах

К настоящему времени разработаны и применяются не только антитоксические сыворотки для ле¬чения и профилактики дифтерии, столбняка, газовой гангрены, ботулизма, но и множество противобактериальных (противотифозная, дизентерийная, противочумная и др.), а так¬же противовирусных сывороток (гриппозная, коревая, против бешенства и др.).

Иммунные сыворотки получают путем гипериммунизации (т. е. многократной интенсив¬ной иммунизации) животных (чаще всего ло¬шади, ослы, иногда кролики) специфическим антигеном (анатоксином, бактериальными или вирусными культурами и их антигенами) с пос¬ледующим, в период максимального антитело-образования, кровопусканием и выделением из крови иммунной сыворотки. Иммунные сыворотки, полученные от животных, называют гетерогенными, так как они содержат чужерод¬ные для человека сывороточные белки.

Для получения гомологичных нечужеродных иммунных сывороток используют сыворотки переболевших людей (коревая, паротитная, оспенная сыворотки) или специально иммунизированных людей-доноров (противостолбнячная, противоботулини-ческая и другие сыворотки) либо СЫВОРОТКИ из плацентарной, а также абортной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакци¬нации или перенесенного заболевания.

Естественно, что гомологичные сыворотки предпочтительнее гетерологичных.

Поскольку нативные иммунные сыворотки содержат в своем составе ненужные балластные белки, например альбумин, из этих сывороток выделяют и подвергают очистке и концентрированию специфические белки - иммуноглобулины.

Для очистки и концентрирования иммуног-лобулинов используют различные физико-химические методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Титрование антитоксических сывороток может производиться тремя методами: по Району, Эрлиху и Ремеру:

Метод Района . Осуществляется с помощью реакции флоккуляции по известному анатоксину или токсину, одну Lf которых нейтратизует одна единица антитоксина. Первичная, или инициальная, реакция флоккуляции наступает при соответствии количества антигенных единиц анатоксина количеству антитоксинов в исследуемой сыворотке. Исходя Из результатов первичной реакций флоккуляции и ведут расчет антитоксических единиц в 1 мл испытуемой сыворотки. Однако метод Района является только ориентировочным.

Метод Эрлиха . Перед титрованием сывороток определяют условную смертельную (опытную) дозу токсина. За опытную дозу токсина (Lt ) принимается то его количество, которое в смеси с 1 ME стандартной сыворотки вызывает гибель 50% взятых в опыт животных. На втором этапе титрования к различным разведениям испытуемой сыворотки добавляют опытную дозу токсина, смесь выдерживают 45 мин и вводят животным. По получаемым результатам производят раечет титра испытуемой антитоксической сыворотки.

Метод Ремера . Титрование также осуществляется в два этапа, но данный метод является более экономичным, так как опыт проводится на одном животном. Предварительно определяется опытная некротическая доза токсина - Ln (Limes necrosis ) введением внутрикожно морской свинке различного количества токсина со стандартной сывороткой. За некротическую дозу токсина принимается то его наименьшее количество, которое при внутрикожном введении морской свинке в смеси с 1/50 ME стандартной антитоксической сыворотки вызывает на месте введения некроз на 4-5-й день. Затем различные объемы испытуемой сыворотки в смеси с оттитро ванной некротической дозой токсина вводят внутрикожно морской свинке и по результатам производят расчет титра сыворотки. По методу Ремера титруется противодифтерийная сыворотка.

Иногда, а именно для повышения специ-фичности и активности антител, из молеку¬лы иммуноглобулина выделяют только анти-генсвязывающий участок (Fab-фрагменты); такие иммуноглобулины получили название доменных антител.

Активность иммунных сывороток и имму-ноглобулинов выражают в антитоксических единицах, в титрах вируснейтрализующей, гемагглютинирующей, преципитирующей, агглютинирующей и т. д. активности, т. е. тем наименьшим количеством антител, которое вызывает видимую или регистрируемую соот-ветствующим способом реакцию с определен¬ным количеством специфического антигена.

Иммунные сыворотки и иммуноглобулины применяют с лечебной и профилактической целью. Особенно эффективно применение сывороточных препаратов для лечения токси-немических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для ле¬чения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва и др.) в комплексе с другими способами лечения. С лечебной целью сывороточные препараты

Иммунопрофилактика и иммунотерапия вводят как можно раньше внутримышечно (иногда внутривенно) в больших дозах.

Профилактические дозы сывороточных пре-паратов значительно меньше лечебных, а пре-параты вводят внутримышечно обычно лицам, имевшим контакт с больным или иным ис-точником инфекции, для создания пассивного иммунитета. При введении сывороточных пре-паратов иммунитет наступает через несколько часов и сохраняется 2-3 недели после введения гетерологичных в течение 4-5 недель - гомо-логичных сывороточных препаратов.

После введения сывороточных^ препара¬тов возможны осложнения в виде анафи¬лактического шока и сывороточной болезни. Поэтому перед введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их по Безредке.

Вещества, оказывающие влияние на фун¬кцию иммунной системы, называют иммуномодуляторами .

Их принято подразделять на экзогенные и эндогенные.

К экзогенным иммуномодуляторам относится большая группа веществ различной химической природы и происхождения, оказывающих неспецифическое активирующее или супрессивное действие на иммунную систему, но являющихся чужеродными для организма.

Эндогенные иммуномодуляторы представля¬ют собой достаточно большую группу олиго-пептидов, синтезируемых самим организмом, его иммунокомпетентными и другими клетка¬ми, и способных активировать иммунную сис¬тему путем усиления пролиферации и функции иммунокомпетентных акцессорных клеток.

К экзогенным иммуномодуляторам можно отнести разнообразные адъюванты, природ¬ные или полученные синтезом химические вещества, физические воздействия (радиация, климатические факторы), а к эндогенным им¬муномодуляторам - регуляторные пептиды: интерлейкины (ИЛ-1-ИЛ-26), интерфероны (а-, у-), миелопептиды (5 пептидов), пепти¬ды тимуса (тактивин, тимозин, тимопоэтин и др.), хемокины, ФНО, КСФ, ТФР. Как те, так и другие иммуномодуляторы могут оказывать на иммунную систему активирующее или супрес¬сивное действие, которые могут быть специ¬фическими и неспецифическими, направлен-ными на активацию и подавление отдельных звеньев в работе иммунной системы.

Иммуномодуляторы нашли широкое при-менение при первичных и вторичных имму-нодефицитах различного происхождения, при онкологических болезнях, при транспланта-ции органов и тканей, при лечении иммуно-патологических и аллергических болезней, в иммунопрофилактике и лечении инфек¬ционных болезней и т. д. Для этого создано множество препаратов, обладающих иммуномодулирующим действием.

Антитоксические гетерогенные сыворотки получаются путем гипериммунизации различных животных. Они называются гетерогенными т.к. содержат чужеродные для человека сывороточные белки. Более предпочтительным является применение гомологичных антитоксических сывороток, для получения которых используется сыворотка переболевших людей (коревая, паротидная), или специально иммунизированных доноров (противостолбнячная, противоботулинистическая), сыворотка из плацентарной а так же абортивной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания. Для очистки и концентрирования антитоксических сывороток используют методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация. Активность иммунных антитоксических сывороток выражают в антитоксических единицах, т. е. тем наименьшим кол-вом антител, которое вызывает видимую или регистрируемую соответствующим способом реакцию с определённым кол-вом специфического антигена. Активность антитоксической противостолбнячной сыворотки и соответствующего Ig выражается в антитоксических единицах.

Антитоксические сыворотки применяются для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена). После введения антитоксических сывороток возможны осложнения в виде анафилактического шока и сывороточной болезни, поэтому перед введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их дробно, по Безредке.

Стрептококки, характеристика. Принципы лабораторной диагностики стрептококковых инфекций.

В семейство Streptococcaceae входит семь родов, из которых для человека наибольшее значение имеют стрептококки (род Streptococcus) и энтерококки (род Enterococcus). Наиболее значимые виды - S.pyogenes (стрептококки группы А), S.agalactiae (стрептококки группы В), S.pneumoniae (пневмококк), S.viridans (зеленящие стрептококки, биогруппа mutans), Enterococcus faecalis.

Морфология. Стрептококки - грамположительные цитохромнегативные бактерии шаровидной или овоидной формы, растущие чаще в виде цепочек, преимущественно неподвижные, не имеют спор. Патогенные виды образуют капсулу (у пневмококка имеет диагностическое значение). Факультативные (большинство) или строгие анаэробы.

Культуральные свойства. Стрептококки плохо растут на простых питательных средах. Обычно используют среды с кровью или сывороткой крови. Чаще применяют сахарный бульон и кровяной агар. На бульоне рост придонно - пристеночный в виде крошковатого осадка, бульон чаще прозрачен. На плотных средах чаще образуют очень мелкие колонии. Оптимум температуры +37 о С, рН - 7,2-7,6. На плотных средах стрептококки группы А образуют колонии трех типов:

Мукоидные (напоминают капельку воды) - характерны для вирулентных штаммов, имеющих капсулу;

Шероховатые - плоские, с неровной поверхностью и фестончатыми краями - характерны для вирулентных штаммов, имеющих М- антигены;

Гладкие - характерны для маловирулентных штаммов.

Предпочитают газовую смесь с 5% СО 2 . Способны образовывать L- формы.

Существует ряд классификаций стрептококков. Бета - гемолитические стрептококки при росте на кровяном агаре образуют вокруг колонии четкую зону гемолиза, альфа - гемолитические - частичный гемолиз и позеленение среды (превращение окси- в метгемоглобин), гамма- гемолитические - на кровяном агаре гемолиза незаметно. Альфа - гемолитические стрептококки за зеленый цвет среды называют S.viridans (зеленящими).

Антигенная структура. Серологическая классификация имеет практическое значение для дифференциации имеющих сложное антигенное строение стрептококков. В основе классификации - группоспецифические полисахаридные антигены клеточной стенки . Выделяют 20 серогрупп, обозначенных заглавными латинскими буквами. Наибольшее значение имеют стрептококки серогрупп А,В и D.

У стрептококков серогруппы А имеются типоспецифические антигены - белки М, Т и R. По М- антигену гемолитические стрептококки серогруппы А подразделены на серовары (около 100).

Факторы патогенности стрептококков.

1. Белок М- главный фактор. Определяет адгезивные свойства, угнетает фагоцитоз, определяет типоспецифичность, обладает свойствами суперантигена. Антитела к М- белку обладают протективными свойствами.

2. Капсула - маскирует стрептококки за счет гиалуроновой кислоты, аналогичной гиалуроновой кислоте в тканях хозяина.

3. С5а - пептидаза - расщепляет С5а - компонент комплемента, чем снижает хемоатрактивную активность фагоцитов.

4. Стрептококки вызывают выраженную воспалительную реакцию, в значительной степени обусловленную секрецией более 20 растворимых факторов - ферментов (стрептолизины S и О, гиалуронидаза, ДНК- азы, стрептокиназа, протеазы) и эритрогенных токсинов.

Эритрогенин - скарлатинозный токсин, обусловливающий за счет иммунных механизмов образование ярко красной скарлатинозной сыпи. Выделяют три серологических типа этого токсина (А,В и С). Токсин обладает пирогенным, аллергенным, иммуносупрессивным и митогенным действием.

Генетика. Мутации и рекомбинации менее выражены, чем у стафилококков. Способны синтезировать бактериоцины.

Эпидемиологические особенности. Основными источниками являются больные острыми стрептококковыми инфекциями (ангина, пневмония, скарлатина), а также реконвалесценты. Механизм заражения - воздушно - капельный, реже - контактный, очень редко - алиментарный.

Клинико - патогенетические особенности. Стрептококки - обитатели слизистых верхних дыхательных путей, пищеварительного и моче - полового трактов, вызывают различные заболевания эндо- и экзогенного характера. Выделяют локальные (тонзиллит, кариес, ангины, отиты и др.) и генерализованные инфекции (ревматизм, рожистое воспаление, скарлатина, сепсис, пневмония, стрептодермии и др.).

Лабораторная диагностика. Основной метод диагностики - бактериологический. Материал для исследования - кровь, гной, слизь из зева, налет с миндалин, отделяемое ран. Решающим при исследовании выделенных культур является определение серогруппы (вида). Группоспецифические антигены определяют в реакции преципитации, латекс - агглютинации, коагглютинации, ИФА и в МФА с моноклональными антителами (МКА). Серологические методы чаще используют для диагностики ревматизма и гломерулонефрита стрептококковой этиологии - определяют антитела к стрептолизину О и стрептодорназе.


Билет № 30

1. Антибиотикорезистентность микробов. Механизм формирования. Пути преодоления. Методы определения чувствительности микробов к антибиотикам. Осложнения при антибиотикотерапии.

это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным, этиотропным (действующим на причину) действием.

По направленности действия химиотерапевтические препараты делят на:

1) противопротозойные;

2) противогрибковые;

3) противовирусные;

4) антибактериальные.

По химическому строению выделяют несколько групп химиотерапевтических препаратов:

1) сульфаниламидные препараты (сульфаниламиды) – производные сульфаниловой кислоты. Они нарушают процесс получения микробами необходимых для их жизни и развития ростовых факторов – фолиевой кислоты и других веществ. К этой группе относят стрептоцид, норсульфазол, сульфаметизол, сульфометаксазол и др.;

2) производные нитрофурана. Механизм действия состоит в блокировании нескольких ферментных систем микробной клетки. К ним относят фурацилин, фурагин, фуразолидон, нитрофуразон и др.;

3) хинолоны. Нарушают различные этапы синтеза ДНК микробной клетки. К ним относят налидиксовую кислоту, циноксацин, норфлоксацин, ципрофлоксацин;

4) азолы – производные имидазола. Обладают противогрибковой активностью. Ингибируют биосинтез стероидов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. К ним относят клотримазол, кетоконазол, флуконазол и др.;

5) диаминопиримидины. Нарушают метаболизм микробной клетки. К ним относят триметоприм, пириметамин;

6) антибиотики – это группа соединений природного происхождения или их синтетических аналогов.

Принципы классификации антибиотиков.

1. По механизму действия:

1) нарушающие синтез микробной стенки (b-лактамные антибиотики; циклосерин; ванкомицин, тейкоплакин);

2) нарушающие функции цитоплазматической мембраны (циклические полипептиды, полиеновые антибиотики);

3) нарушающие синтез белков и нуклеиновых кислот (группа левомицетина, тетрациклина, макролиды, линкозамиды, аминогликозиды, фузидин, анзамицины).

2. По типу действия на микроорганизмы:

1) антибиотики с бактерицидным действием (влияющие на клеточную стенку и цитоплазматическую мембрану);

2) антибиотики с бактериостатическим действием (влияющие на синтез макромолекул).

3. По спектру действия:

1) с преимущественным действием на грамположительные микроорганизмы (линкозамиды, биосинтетические пенициллины, ванкомицин);

2) с преимущественным действием на грамотрицательные микроорганизмы (монобактамы, циклические полипептиды);

3) широкого спектра действия (аминогликозиды, левомицетин, тетрациклины, цефалоспорины).

4. По химическому строению:

1) b-лактамные антибиотики. К ним относятся:

а) пенициллины, среди которых выделяют природные (аминипенициллин) и полусинтетические (оксациллин);

б) цефалоспорины (цепорин, цефазолин, цефотаксим);

в) монобактамы (примбактам);

г) карбапенемы (имипинем, меропинем);

2) аминогликозиды (канамицин, неомицин);

3) тетрациклины (тетрациклин, метациклин);

4) макролиды (эритромицин, азитромицин);

5) линкозамины (линкомицин, клиндамицин);

6) полиены (амфотерицин, нистатин);

7) гликопептиды (ванкомицин, тейкоплакин).

Основные осложнения химиотерапии

Все осложнения химиотерапии можно разделить на две группы: осложнения со стороны макроорганизма и со стороны микроорганизма.

Осложнения со стороны макроорганизма:

1) аллергические реакции. Степень выраженности может быть различной – от легких форм до анафилактического шока. Наличие аллергии на один из препаратов группы является противопоказанием для использования и других препаратов этой группы, так как возможна перекрестная чувствительность;

2) прямое токсическое действие. Аминогликозиды обладают ототоксичностью и нефротоксичностью, тетрациклины нарушают формирование костной ткани и зубов. Ципрофлоксацин может оказывать нейротоксическое действие, фторхинолоны – вызывать артропатии;

3) побочные токсические эффекты. Эти осложнения связаны не с прямым, а с опосредованным действием на различные системы организма. Антибиотики, действующие на синтез белка и нуклеиновый обмен, всегда угнетают иммунную систему. Хлорамфеникол может подавлять синтез белков в клетках костного мозга, вызывая лимфопению. Фурагин, проникая через плаценту, может вызывать гемолитическую анемию у плода;

4) реакции обострения. При применении химиотерапевтических средств в первые дни заболевания может происходить массовая гибель возбудителей, сопровождающаяся освобождением большого количества эндотоксина и других продуктов распада. Это может сопровождаться ухудшением состояния вплоть до токсического шока. Такие реакции чаще бывают у детей. Поэтому антибиотикотерапия должна сочетаться с дезинтоксикационными мероприятиями;

5) развитие дисбиоза. Он чаще возникает на фоне применения антибиотиков широкого спектра действия.

Осложнения со стороны микроорганизма проявляются развитием лекарственной устойчивости. В ее основе лежат мутации хромосомных генов или приобретение плазмид устойчивости. Существуют роды микроорганизмов, обладающие природной устойчивостью.

Биохимическую основу устойчивости обеспечивают следующие механизмы:

1) энзиматическая инактивация антибиотиков. Этот процесс обеспечивается с помощью синтезируемых бактериями ферментов, разрушающих активную часть антибиотиков;

2) изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки;

3) изменение структуры компонентов микробной клетки.

Развитие того или иного механизма резистентности зависит от химической структуры антибиотика и свойств бактерий.

Методы борьбы с лекарственной устойчивостью:

1) поиск и создание новых химиотерапевтических препаратов;

2) создание комбинированных препаратов, которые включают в себя химиотерапевтические средства различных групп, усиливающих действие друг друга;

3) периодическая смена антибиотиков;

4) соблюдение основных принципов рациональной химиотерапии:

а) антибиотики надо назначать в соответствии с чувствительностью к ним возбудителей заболеваний;

б) лечение следует начинать как можно раньше;

в) химиотерапевтические препараты необходимо назначать в максимальных дозах, не давая микроорганизмам адаптироваться.